of Neutron Physics

Mobile menu


Responsible for the facility

Petrenko Alexander
Moscow Region, Dubna, Joliot Curie, 6
phone: +7 (49621) 6-31-19 
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Main research areas

  1. Layered magnetic and superconducting thin films;
  2. Three-dimensional nanostructures;
  3. Colloidal solutions;
  4. Ferromagnetic fluids.

Facility layout

Main view of facility

Main view of facility

Description of REMUR

Description of the spectrometr of polarized neutrons given in works [1-3]. The REMUR reflectometer is designed to study properties of thin films, interfaces in multilayer structures, various types of ordering, self-organization in biological systems, etc. by the method of specular and off-specular neutron reflection from the surface of films. A polarized neutron beam is formed by a neutron-optical system consisting of a set of mirrors and diaphragms that specify necessary collimation and polarization of the beam. In the reflectometer the so-called slit geometry is used, in which a narrow neutron beam 0.1-1 mm wide is collimated by slits in the vertical direction. Neutron scattering occurs in the horizontal plane. Highly efficient adiabatic radio-frequency flippers [4] are used to reverse the neutron spin direction in a wide range of neutron wavelengths (0.9-10 Å). The analysis of polarization of the reflected beam is performed using wide-aperture fan mirror analyzer [5, 6]. The reflected beam is detected by two-coordinate gas 3He detectors with spatial resolution of about 2.5 mm.

Basic Parameters


Sample plane vertical.
Scattering plane horizontal.
Neutron wavelength 0.9 - 15 Å.
Wavelength resolution δλ = 0.015 Å.
Scattering angle range 1 - 100 mrad.
Sample-detector distance 0.7 - 4.9 m.
Detector spatial resolution 2.5 mm.
Flux at sample for two polarization modes:
two polarizers PR1 + PR2
second polarizer PR2

104 n/(s·cm2)
3·104 n/(s·cm2)

Sample environment

Three-circle goniometer with an electromagnet mounted on top of it and generating external magnetic field in the range 0-20 kOe and making it possible to change the field direction with respect to the sample plane in the range of ± 90°.

There is a set of removable poles with cross sections: 40 × 20 mm2, 110 × 70 mm2 and 60 × 40 mm2. The maximum magnetic field with a pole gap of 15 mm is 20 kOe for small poles with cross section of 40 × 20 mm2 and 10 kOe for large poles of 110 × 70 mm2. Cryostat with a vertical magnetic field of up to 3 Tesla and T=1.45-600 K. The maximum sample size is 40x40 mm2.


  1. V. L. Aksenov, K.N. Jernenkov, S.V. Kozhevnikov, H. Lauter, V. Lauter-Pasyuk, Yu.V. Nikitenko, A.V. Petrenko, The polarized neutron spectrometer REMUR at the pulsed reactor IBR-2, JINR Communications D13-2004-47 (2004) (in Russian and English).
  2. V. L. Aksenov, V. V. Lauter-Pasyuk, H. Lauter, Yu. V. Nikitenko and A. V. Petrenko, Polarized neutrons at pulsed sources in Dubna, Physica B 335 (2003) 147-152.
  3. V. L. Aksenov, Yu. V. Nikitenko, Polarized Neutron Reflectometry at IBR-2, Neutron News 16 (2005) 19-23.
  4. S.V. Grigoriev, A.I. Okorokov, V.V. Runov, Peculiarities of the Construction and Application of Broadband Adiabatic Flipper of Cold Neutrons, Nucl. Instr. Meth. A 384 (1997) 451.
  5. Yu.V. Nikitenko, V.A. Ul'yanov, V.M. Pusenkov, S.V. Kozhevnikov, K.N. Jernenkov, N.K. Pleshanov, B.G. Peskov, A.V. Petrenko, V.V. Proglyado, V.G. Syromyatnikov, A.F. Schebetov, Fan analyzer of neutron beam polarization on REMUR spectrometer at IBR-2 pulsed reactor, Nuclear Instruments and Methods in Physics Research A 564 (2006) 395-399.
  6. V. A. Ul'yanov, Yu. V. Nikitenko, V. M. Pusenkov, S. V. Kozhevnikov, K. N. Jernenkov, N. K. Pleshanov, B. G. Peskov, A.V. Petrenko, V. V. Proglyado, V. G. Syromyatnikov, A. F. Schebetov, A fan analyzer of neutron beam polarization of the spectrometer REMUR at the pulsed reactor IBR-2, JINR Communications E-13-2004-161 (2004).
  7. O.V. Fateev, G.A. Cheremukhina, S.P. Chernenko, Yu.V. Zanevsky, H. Lauter, V.V. Lauter, S.V. Kozhevnikov, Yu.V. Nikitenko, A.V. Petrenko, A Position-Sensitive Detector for the Polarized-Neutron Spectrometer. Pribory i Tekhnika Eksperimenta 2 (2001) 5-12 (in Russian). Instruments and Experimental Techniques, 44 (2001) 137-143 (in English).