Measurement of differential and total scattering cross sections of 14.1 MeV neutrons on carbon nuclei: methodological aspects and results

P.S. Prusachenko on behalf of TANGRA collaboration

prusachenko@jinr.ru

Outline

- Motivation
- Experiment and Data Analysis
- Methodological Aspects. Part I Detector Characterization
- Methodological Aspects. Part II Corrections and Uncertainties
- Results
- Publications
- Summary

Motivation

Fundamental aspects:

- ¹²C nucleus structure
- Data for improving theoretical models
- Hoyle's state and and more highly excited states

Applied aspects:

- The ¹²C(n,n₁γ)¹²C reaction is of interest to the elemental analysis
- Helium accumulation in potential fusion reactor materials the role of the $^{12}\text{C}(n,n)3\alpha$ reaction is poorly known
- Evaluated cross-sections from different libraries are extremely contradictory

Experiment and Data Analysis

Experimental setup and procedure

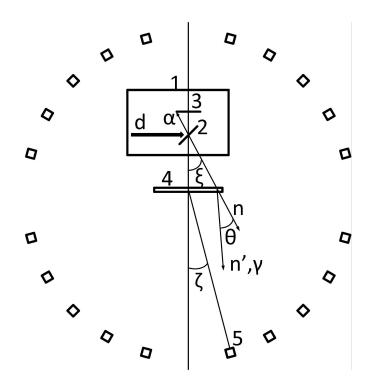


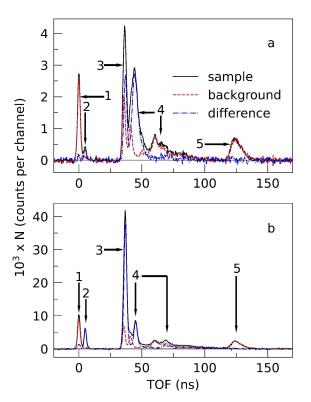
Fig. 1. Layout of experimental set-up (not to scale) ξ - the incident neutron angle

 θ - the scattering angle

 ζ - the detector angle

Experimental setup:

- The ING-27 neuron generator (1) with tritium target (2)
- Position-sensitive silicon detector of α-particles (3) consisting on 16 vertical and 16 horizontal strips
- Sample (4) chemical pure carbon or polyethylene
- 20 EJ-200 scintillators (5)


Geometrical characteristics:

- Sample-detector distance was 2040 mm
- Sample dimensions were 420x420x10 mm (polyethylene) and 440x440x21 mm (graphite)
- Detector dimensions were 80x80x300 mm

Measurement procedure and data acquisition:

- Waveform digitizer (100 MS/s, 16 bits)
- 8 hours measurement with PE sample
- 25 hours measurement with carbon sample
- Background measurement after each sample measurement

Data Analysis. Background Subtraction

- The background TOF spectra were subtracted from the corresponding spectra acquired in the presence of the sample after normalization to the number of α-particles (tagged neutrons)
- The attenuation of the background spectrum due to the attenuation of the tagged neutron beam in the sample was taken into account by GEANT4 simulation

Spectrum components:

- 1,2 prompt γ -rays from inelastic scattering of neutrons in neutron generator and sample respectively
- 3,4 neutrons elastically and inelastically scattered on the generator materials (background) or carbon and hydrogen nuclei in sample 5 the wall of experimental hall
- Fig. 2. The TOF spectra acquired with and without the sample. (a) is the measurement with the polyethylene sample and without it; (b) is the same only for carbon sample.

Data Analysis. Cross Section Calculation

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{N_c k_{ms} k_{iatt} k_{ct} k_{satt} cos \xi}{N_{\alpha} n_{nucl} \varepsilon \Delta \Omega}$$

- N is number of counts
- k_{ms}, k_{jatt}, k_{satt} and k_t are the correction factors taking into account multiple scattering, attenuation of primary neutrons and secondary neutrons and gammas in the sample and cross-talk
- ξ is the incident neutrons angle
- N_n is the number of tagged neutrons
- n_{nucl} is the surface density of carbon nuclei in the sample
- ε is the detector intrinsic efficiency
- $\Delta\Omega$ is the solid angle

Total reaction cross section:

$$\sigma = 2\pi \int_{-1}^{1} \frac{d\sigma}{d\Omega} (\cos\theta) \ d\cos\theta$$

Light output functions. Problems

- Response functions of the organic scintillators are formed by the products of the fast neutron induced reactions, mainly protons and alphas
- Light output for heavy charged particles depends nonlinearly on their dE/dx

Problems:

- Light output functions are extremely contradictory for protons
- There are no data for α-particles

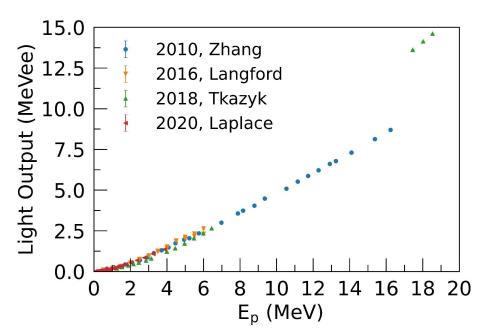


Fig. 3. The available experimental datasets on proton light output for the EJ-200 scintillator and its analogues

Light output functions. Decision

- Neutrons scattered at different angles have fixed energies (2.0-14.0 MeV)
- Light output value for fixed neutron energy can be extracted from the analysis of pulse-height

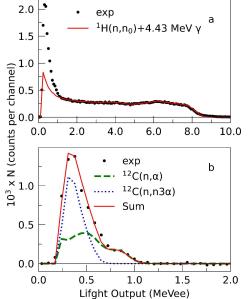
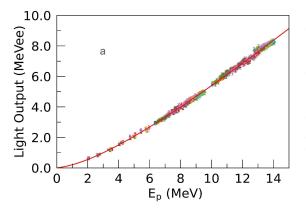



Fig. 4. The one-dimensional light output spectrum corresponding to the $^{12}C(n,n_0)^{12}C$ reaction and scattering angle of 13 deg. (a) - total, (b) - alphas

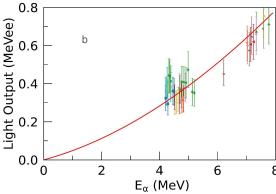


Fig. 5. Light output data measured in the work

- (a) data for protons
- (b) data for α-particles

Detectors Efficiency

Problems:

- Large contribution of ¹²C(n,α)⁹Be and ¹²C(n,n)3α to the response function above 8 MeV
- The new experimental methods are needed to verify simulated efficiency curve

Decision:

The ¹H(n,n₀)¹H reaction as a standard to determine the neutron detection efficiency

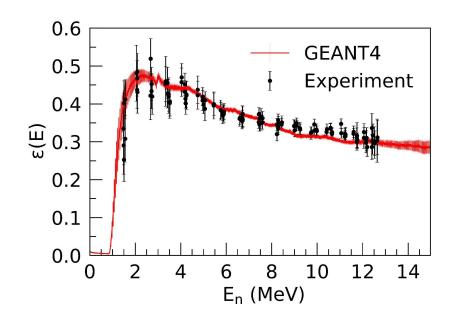
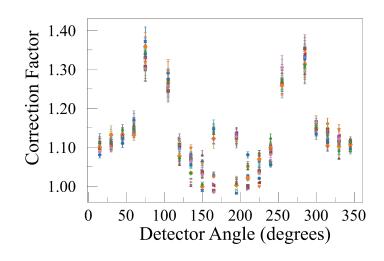


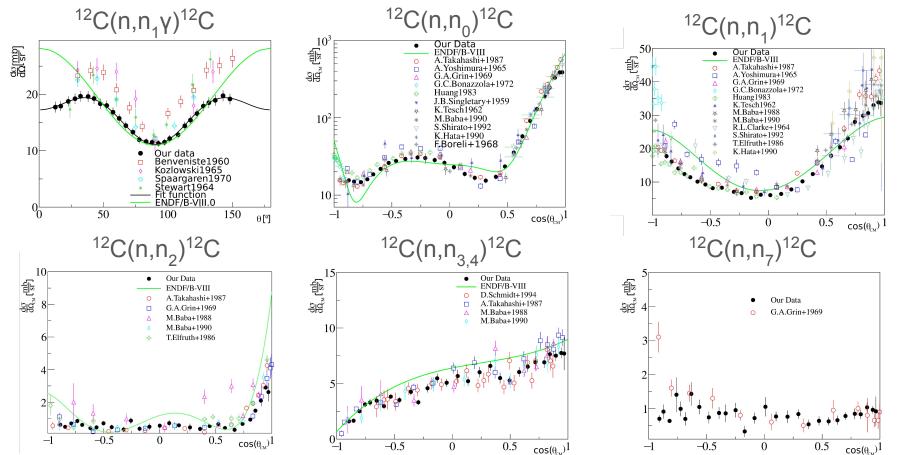
Fig. 6. The measured efficiency values vs the GEANT4 simulation

Methodological Aspects. Part II - Corrections and Uncertainties

Corrections

- The effects of multiple scattering, absorption and cross-talk were evaluated by GEANT4 simulation
- Cross-talk effect was <<1%
- Absorption in the sample and multiple scattering of secondary neutrons effect varied from 5-10% (close to 0⁰ and 180⁰) to 35% (close to 90⁰)
- Contribution of the "additional" γ-rays from secondary inelastic scattering was about 10-12%




Fig. 7. Correction factor taking into account the absorption and multiple scattering. The elastic scattering case. Different symbols correspond to different vertical strips

Uncertainties

- Statistic: 0.2 5.0% (total), 0.5-30.0% (differential)
- Efficiency: 4.0-7.0%
- Corrections: 1.0-3.0%
- Solid Angle: 1.0%
- Sample thickness: 0.7%

Results

Differential Cross Sections

Total Cross Sections

References	Cross section (mb)								
	n _o	n ₁	n ₂	n ₃	n ₄	n ₅	n ₆	n ₇	(n,n′)3α
This work	745±55	180±8	8.7±0.6	35±3	25±3	-	-	9.4±0.7	78±4 – ¹² C(n,n _{2,3,4,7}) this work; 55±12 – ¹² C(n,n _{5,6}) from Grin, 1969
ENDF/B-VIII.0	827	209	16	66.6	20	12	6.5	-	124
EAF-2010	-	-	_	-	-	-	-	-	270
FENDL-3.1b	801	182	0.9	9.9	2.1	2.7	3.1	3.3	22
JEFF-3.3	827	210	19.3	66.6	20.0	12	6.5	1	124.4
JENDL-4.0/HE	801	183	0.9	9.9	2.1	2.7	3.1	3.3	22

Publications

- Prusachenko, P.S., Grozdanov, D.N., Fedorov, N.A. et al, Characterization of an EJ-200 plastic scintillator array for experiments with 14-MeV tagged neutrons using the carbon and polyethylene samples, *Nuclear Instruments and Methods in Physics Research Section A 1072 (2025) 170143*. https://doi.org/10.1016/j.nima.2024.170143
- Grozdanov, D.N., Prusachenko, P.S., Fedorov, N.A. et al, Measurement of differential and total cross sections for scattering of 14.1 MeV neutrons on ¹²C nuclei, *In Progress....*

Summary

- The differential cross-sections for scattering of 14.1 MeV neutrons on carbon nuclei were measured in the angular range of 13-150⁰
- The total cross-sections for each scattering channel were determined by integrating the angular distributions over entire solid angle range
- The neutron detector array used was characterized to obtain the initial data for simulating the response functions and efficiency. Simulated efficiency was experimentally verified using the ${}^{1}\text{H}(n,n_{0}){}^{1}\text{H}$ reaction standard
- Corrections were taken into account for multiple scattering and attenuation of secondary neutrons and gammas, as well as crosstalk and attenuation of primary neutrons in the sample.
- The results obtained were compared with other experimental data and the evaluations. The data are generally in agreement with other experimental data but there is a large difference with the evaluated cross-sections from some libraries

Thank for your attention!

prusachenko@jinr.ru