Юбилейный семинар, посвящённый 110-летию со дня рождения Ф.Л. Шапиро

Разработка и создание широкоапертурных сцинтилляционных детекторов для спектрометров по времени пролёта

Подлесный Максим Михайлович, научный сотрудник сектора №1 детекторов и электроники НЭОКС ИБР-2 ОНИРКС ЛНФ

Содержание

<u>1) Сектор №1 детекторов и электроники НЭОКС ИБР-2М:</u>

- Основные принципы проектирования детекторов
- Детектор АСТРА-М Фурье-дифрактометра ФСД
- Широкоапертурный детектор обратного рассеяния для ФДВР
- Исследование методов обработки сигналов со сцинтилляционных детекторов

2) Результаты, полученные в Группе №1 нового источника нейтронов СНИиКЗ:

Основные принципы проектирования детекторов

Условие Брэгга–Вульфа Кривая геомет $2d \sin(\theta/2) = n\lambda$ $R(\theta) = -\frac{1}{s}$

Кривая геометрической фокусировки $R(\theta) = \frac{A_0}{\sin(\theta/2)} - L_0$

L₀ – расстояние от Фурьепрерывателя до образца; A₀ – параметр, задающий положение ПВФ относительно образца; R – расстояние от образца до детектирующей поверхности

3/22

Основные принципы проектирования детекторов

Сцинтилляционный экран ⁶LiF/ZnS(Ag), 0.42 мм $d_{\varphi\varphi\phi_{i}}(\theta) = 0.42/\text{Sin}\left[\text{ArcTan}\left[\frac{R_{i}(\theta)\cos(\theta/2)}{A_{i}(\theta)\sin^{2}(\theta/2)}\right]\right]$ Eff_i(θ) = 1 - e^{-0.921×d_{\varphi\varphi\phi_{i}}}

Основные принципы проектирования детекторов

Детектор АСТРА для Фурье-стресс дифрактометра FSD

- Каждый из детекторов включает 4 независимых ПВФ, каждую из которых аппроксимирует 4 нейтронных счётчика на основе ⁶LiF/ZnS(Ag), спектросмещающих оптических волокон и ФЭУ
- Каждый счётчик помимо основных компонент включает в себя индивидуальную защиту от нейтронного фона и собственный узел крепления модуля к юстировочному устройству, что создаёт дополнительные сложности в настройке данного детектора и его эксплуатации.
- По современным меркам покрывает малый телесный угол (~0.18 ср)

Вид счётчиков в составе дифрактометра ФСД.

Схема профилирования с использованием цилиндрических опор

Схема устройства поддержки и позиционирования детектора

Детектор АСТРА-М для Фурье-стресс дифрактометра FSD

- Покрываемые углы рассеяния: $\theta = \pm 90 \pm 20^\circ$, $\varphi \in [-12^\circ; 12^\circ]$; $\Omega = 0.55$ ср)
- Метод комбинированной фокусировки (14 детектирующих элементов);
- Высокая эффективность конвертации тепловых нейтронов (72%);
- Корпус детектора из карбида бора; коэффициент ослабления фона 2 × 10⁷
- 14 каналов регистрации; Обработка сигналов с использованием 1 модуля MPD-240

Один счётчик детектора АСТРА-М

Собранный детектор на 11а канале ИБР-2

Широкоапертурный детектор обратного рассеяния (ДОР)для Фурье-дифрактометра высокого разрешения

Внешний вид детектора

- Покрываемый угол $\Omega_d \approx 2.0$ ср, $\theta = (133 175)^\circ$;
- 6 колец, разделённые на 12 секторов;
- 2 слоя сцинтиллятора, средняя эффективность конвертации 85%;
- Геом. вклад детектора в функцию разрешения не превышает $R_{\theta} = 2.62 \times 10^{-4};$
- 108 детекторных элементов (216 каналов регистрации)
- Обработка сигналов с использованием 8 модулей MPD-32

Корпус ДОР в сборке

Собранный детектор на 5-м канале ИБР-2

Детектор ACTPA-2M для Фурье-стресс дифрактометра FSS: предпроектные расчёты

		Положение шести поверхностей	
Число счётчиков	6	геометрической фокусировки и примерно	Корпус счётчика детектора
Углы рассеяния по θ	73.45° – 106.70°	воспроизведённые размеры корпуса	ACTPA-2M
Углы рассеяния по ф Телесный угол, ср	-12° – 12° 0.52		
Средняя эффективность конвертации	88.3%		
для λ =1.8 А			
Минимальное расстояние, мм	850		
Максимальное расстояние, мм (без	1443.75		
учёта корпуса и ФЭУ)		1200	
Площадь сцинтиллятора, м ²	3.40		
Длина дуги сцинтиллятора, мм	600		

Исследование методов обработки сигналов со сцинтилляционных детекторов

Исследование методов обработки сигналов со сцинтилляционных детекторов

Статистический метод (PSD)

Сравнение методов

- Исследованы нейтронный счёт и доля ложных срабатываний в зависимости от мёртвого времени при загрузках детектора в диапазоне 100 н/с – 27 000 н/с
- Зарядовый метод показал вдвое больший нейтронный счёт по сравнению с методом длительности сигнала (30% и 66% потери в счёте, соответственно)
- Пиковая загрузка одного канала регистрации на детекторе АСТРА-М с использованием прерывателя Фурье составляет 7.18×10⁴ н/с

Исследование методов обработки сигналов со сцинтилляционных детекторов

- Симуляция загрузки детектора 10⁶ н/с методом Монте-Карло
- Исследование возможности повышения нейтронного счёта с ٠ помощью регистрации факта попадания второго нейтрона во второе временное окно

14/22

2) Результаты, полученные в Группе №1 нового источника нейтронов СНИиКЗ

- Расчёт температурных полей в ТВЭЛах для реакторов НЕПТУН, ИБР-2
- Расчёт механических деформаций ТВЭЛов для реакторов НЕПТУН, ИБР-2
- Расчёт температурных полей в ТВС для реактора ИБР-2
- Расчёт механических деформаций ТВС для реактора ИБР-2
- Расчёт тепловыделений в элементах конструкции реактора ИБР-2
- Расчёт тепловыделений в элементах конструкции реактора НЕПТУН в нескольких вариациях
- Исследование термомеханических процессов, влияющих на динамику реактора ИБР-2
 - аксиальное расширение топлива и форма таблеток вследствие пространственного распределения температуры в топливе
 - деформация ТВС вследствие перепада температур на стенках
 - расширение стенок концевика ТВС вследствие изменения температуры теплоносителя

• аксиальное расширение топлива и форма таблеток вследствие пространственного распределения температуры в топливе

Температурное распределение внутри топлива

Схематичное представление формы таблеток в ТВЭЛе

- деформация ТВС вследствие перепада температур на стенках
- 3D модель для построения теплофизического расчёта

Температура теплоносителя в конце АЗ

Величина и направление

Зависимость градиента температур на стенке ТВС от времени после единичного импульса

• расширение стенок концевика ТВС вследствие изменения температуры теплоносителя

18/22

ИХОС

Расчёт тепловыделений в элементах конструкции импульсного реактора периодического действия НЕПТУН в нескольких вариациях

15 МВт, вариант без кожуха

к Г К Т К А

Γ**i**←A Γ

Модулятор

21/22

Автор выражает благодарность коллегам НЭОКС, при участии которых создавались приборы, проводились расчёты и анализировались их результаты: В.И. Боднарчуку, В.В. Круглову, В.М. Милкову, А.А. Богдзелю, А.К. Курилкину, В.В. Булавиной, К.В. Булатову, П.А. Кислицину, Г.Е. Мальковой, О. Даулбаеву, М.О. Петровой, А.Ч. Сопубековой, О.В. Ермолаевой, А.В. Семечкину, А.Л. Евсееву, В.Х. Као.

А также коллегам из группы нового источника: Е.П. Шабалину, М.В. Рзянину, А.Е. Верхоглядову, А.А. Хассану, Я.А. Вдовину, И.В. Кушниру.

Спасибо за внимание!

Юбилейный семинар, посвящённый 110-летию со дня рождения Ф.Л. Шапиро

Разработка и создание широкоапертурных сцинтилляционных детекторов для спектрометров по времени пролёта

Подлесный Максим Михайлович, научный сотрудник сектора №1 детекторов и электроники НЭОКС ИБР-2 ОНИРКС ЛНФ

