Объединенный институт ядерных исследований Лаборатория нейтронной физики им. И.М.Франка

к 40-летию ИБР-2

В.Л.Аксенов

Рефлектометрия поляризованных нейтронов

Три этапа пути. Итоги. Направления развития.

Семинар ЛН 29 февраля 2024 г.

ИБР-2: 1966, 1969, 1977, 1980,1982, 1984

1970 – начало организации инфраструктуры ФКС рук. Ю.М.Останевич

- Новые направления (относительно ИБР-30):
- Корреляционный анализ квазиупругого рассеяния –
 Н.Кроо
- * Динамическая дифракция Р. Михалец
- * Нейтронная радиография B.M.Назаров
- * УХН Ю.В.Таран
- * Оптика поляризованных нейтронов А.Байорек

1. Д.А. Корнеев – основатель РПН в ЛНФ

Из дневника Д.А.Корнеева (1974 г.)

«Мы не хотим получать ерундовые задачи ... Мы мечтаем о сверхзадачах и чтобы, если справимся, – гордиться этим всю жизнь».

Зеркальные нейтроноводы

Владимир Максимович Назаров (10.12.1931 – 30.12.1994)

Рис.4.1 - коэффициент пропускания $T_0(U)$ для изогнутого 3H по формуле /3/, закрытые точки - экспериментальные данные; 2 - 3H установлен под углом θ^* относительно оси пучка; 3 - дважды изогнутый нейтроновод /8/.

Рис.5. Сечение ЗН ИБР-2. 1 - 12 мм стекла FLOAT с напыленной пленкой Ni, толщиной 2000 Å; 2 юстировочные винты; 3 опора из швеллеров; 4 шариковые направляющие; 5 - винтовые планки; 6 - труба для создания вакуума.

ция которого схематически представлена на <u>рис.5</u>. Коэффициент пропускания тоже имел минимальное значение /0,6/ в районе 4-5А, но, как и ожидалось, был выше, чем у 35-метровой модели /0,4/.

ЛИЯФ РАН (Гатчина) - ЛНФ ОИЯИ

С коллегами из ЛИЯ⊈, 1973

Drabkin G.M., Okorokov A.I., Schebetov F.A., Borovikova N.V., Gukasov A.G., Korneev D.A., Kudrjashov V.A., Runov V.V. *Multilayer Fe-Co mirror polarizing neutron guide* // Nucl. Instr. Meth. 1976. V. 133. P. 453.

Юрий Мечиславович Останевич (25.07.1936 - 1.08.1992)

Спин-флиппер Корнеева

Спин-флиппер с протяженной рабочей областью: *1* – основные прямоугольные катушки; *2* – компенсационные круглые катушки. Стрелка *n* показывает направление нейтронного пучка.

Корнеев Д.А. Спин-флиппер с протяженной рабочей областью для немонохроматических пучков нейтронов. Препринт ОИЯИ Р13-12362. Дубна, 1979; Korneev D.A. // NIM. 1980. V. 169. Р. 65–69.

Корнеев Д.А. Способ определения вероятности реверса спина при прохождении нейтрона через спинфлиппер. Препринт ОИЯИ 33-80-65. Дубна, 1980.

Корнеев Д.А., Кудряшов В.А. Экспериментальное определение физических характеристик спинфлиппера с протяженной рабочей областью. Препринт ОИЯИ РЗ-80-350. Дубна, 1980; Korneev D.A., Kudriashov V.A. // NIM. 1981. V. 179. Р. 509–513.

Спектрометр поляризованных нейтронов (СПН, 1984, 1988)

Д.А.Корнеев (в центре) с коллегами из Магдебурга (ГДР).

А.В.Петренко и Е.Б.Докукин на СПН (1988)

Dokukin E.B., **Korneev D.A.**, Loebner W., Pasjuk V.V., Petrenko A.V., Rzany H. *Neutron depolarization study of static magnetization fluctuations in ferromagnets*. JINR, E-88-459. Dubna, 1988.

Korneev D.A., Pasyuk V.V., Petrenko A.V., Dokukin E.B. *Neutron reflectivity studies on superconducting, magnetic and absorbing thin films at the pulsed reactor IBR-2* // Surface X-Ray and Neutron Scattering / Eds. H.Zabel and I.K.Robinson. Springer-Verlag, 1992. P. 213–217.

Спектрометр СПН-2 (1997)

Схема рефлектометра поляризованных нейтронов СПН-2 (вид сверху): 3 – замедлитель реактора; П – поляризатор; СФ1 – первый спин-флиппер; ЭМ – электромагнит; О – образец; СФ2 – второй спин-флиппер; А – многощелевой анализатор на суперзеркалах; ПЧД – позиционно-чувствительный детектор. Плоскость образца расположена вертикально, рассеяние происходит в горизонтальной плоскости.

Оптика нейтронов вблизи угла скольжения

незеркальное диффузное рассеяние α_i ≠ α_f !

Стандартная рефлектометрия на СПН-2

Схематическое изображение зеркального отражения.

пик Брэгга $|R|^2$ 10-1 пик Брэгга Reflectivity 10-2 бахрома 10-3 Киссига 10-4 амплитуда шероховатости и разница плотностей 10-5 0 1.5 2 0.5 1 Угол рассеяния [°]

Отражение от многослойной структуры 8×[Ni(7нм)/Ti(7нм)] на стекле. λ = 4.7 Å. Видны пики Брэгга и бахрома Киссига. Зеркальное отражение:

$$\alpha_i = \alpha_f = \alpha$$
, $\theta - 2\alpha << 1$

Приближение бесконечных идеальных поверхностей: $k''_{f} = k''_{i}$ $q_{\parallel} = k''_{f} - k''_{i} = 0$ $V(z) = \langle V(x, y, z) \rangle_{xy} = \frac{2\pi\hbar^{2}}{m}\rho(z)$

Magnetic off-specular scattering from magnetic domains

Scattering from a magnetic multilayer: $[Fe(70Å)Cr(10Å)] \times 12/Al_2O_3$

Рефлектометр РЕФЛЕКС (1996)

С Дж.Карпентером у памятника реактору Ферми в Чикаго, 1992

Korneev D.A., Aksenov V.L., Chernenko L.P. *The TOF four-beam neutron reflectometer REFLEX at the high flux pulsed reactor IBR-2 and some possible applications //* SPIE Proc. Ser. 1992. V. 1738. P. 335–345.

Рефлектометр РЕФЛЕКС-П (2001)

На установке РЕФЛЕКС

Ученик и коллега В.И.Боднарчук

Корнеев Д.А., Боднарчук В.И., Ярадайкин С.П. *Рефлектометр поляризованных нейтронов РЕФЛЕКС-П.* ОИЯИ РЗ-2002-189 (2002).

Неупругое рассеяние в рефлектометрии

The second secon

Схема эксперимента по поиску неупругого рассеяния нейтронов на немагнитных возбуждениях поверхности.

Схема эксперимента по поиску неупругого рассеяния нейтронов на планарных магнитных возбуждениях в тонких пленках по методу времени пролета.

В.И. Боднарчук

2. Трехмерная рефлектометрия

Рефлектометр РЕМУР (2003)

В. Л. Аксенов¹, К. Н. Жерненков¹, С. В. Кожевников¹, Х. Лаутер², В. Лаутер-Пасюк^{1,2,3}, Ю. В. Никитенко¹, А. В. Петренко¹

СПЕКТРОМЕТР ПОЛЯРИЗОВАННЫХ НЕЙТРОНОВ РЕМУР НА ИМПУЛЬСНОМ РЕАКТОРЕ ИБР-2

¹Объединенный институт ядерных исследований, Дубна ²Институт Лауэ–Ланжевена, Гренобль, Франция ³Мюнхенский технический университет, Мюнхен, Германия

2004

Ю.В.Никитенко, А.В.Петренко, **Х.Лаутер**, В.Л.Аксенов, С.В.Кожевников, В.А.Ульянов (2003)

3D - рефлектометрия на РЕМУР

PS-b-PBMA x-y-pixel плоскость – это плоскость 2D детектора. Верхняя поверхность проекции Refl. и Trans beam

TOF зеркальное, незеркальное и GISANS от полимерного нанокомпозита θ = const, λ = 2 ÷ 4.7 Å⁻¹

Усреднение и когерентность

Амплитуда незеркального рассеяния усредняется по всем объемам когерентности, ограничивающим в обратном пространстве все возможные значения волновых векторов падающих нейтронов и покрывающих весь образец.

Эллипсоид когерентности :

$$l: \qquad l_y \ll l_z \ll l_x$$

Типичные параметры : $\alpha_i \approx 1$ мрад, $\Delta \alpha_i \approx 0.2$ мрад,

$$\Delta \phi \approx 10$$
 мрад (азимутальный угол) $\lambda = 0,6$ нм
 $l_z \approx \frac{\lambda}{2\pi \Delta \alpha_i} \approx 500$ нм $= 5 \cdot 10^2$ нм
 $l_x \approx \frac{\lambda}{\pi \Delta \alpha_i \alpha_i} \approx 10^6$ нм $l_y \approx \frac{\lambda}{2\pi \Delta \phi} \approx 10$ нм

Распространение падающего *J*₀, отраженного *J*_{*R*} и преломленного полных потоков в плоскости (*z*, *x*).

Зеркальное отражение – некогерентная сумма интенсивностей от отдельных пятен когерентности $S_{\rm coh} = l_x l_y \approx 10^{-7} \, {\rm cm}^2 \, << 1 \, {\rm cm}^2$ (см. детали В.К. Игнатович «Нейтронная оптика» 2006) Неоднородности размером больше длины когерентности приводят к искажению отраженного пучка: угловому уширению или изменению формы спектра отраженного пучка. Неоднородности в плоскости образца меньше пятна когерентности не искажают пучок, но уменьшают его интенсивность. При этом появляется рассеяние в незеркальных направлениях.

Самоорганизация магнитных наночастиц и сополимера

Зеркальное отражение

Незеркальное (диффузное) рассеяние

Эксперимент

Модельные расчеты

Малоугловое рассеяние при скользящем падении

Для многослойного сополимера PS-d-b-PBMA с наночастицами Fe_3O_4 , PS – PolySterene,

РВМА – PolyButilMethAcrylate. В данном случае концентрация v = 0%

Формирование внутренней структуры в пленке

Сополимер полистерен – полибутилметакрилат (PS-d-b-PBMA)

Фрагмент (белый) измеренного 3D распределения интенсивности в координатах Q_x, Q_y, Q_z для полимера с $v_f = 0\%$. Шкала на осях не указана для качественного обсуждения.

Теоретическая реконструкция фрагмента интенсивности, показанного на рис. слева с модельными параметрами, использованными при подгонке данных на рис. слева. Показаны данные только выше горизонта. Не показан также фон, появляющийся при $Q_z \rightarrow 0$, так как он в теоретическом моделировании не появляется.

Наночастицы инициируют связь осцилляций шероховатостей между интерфейсами, стабилизации многослойной структуры. ЧТО является параметром важным Корреляции хорошо описываются моделью капиллярных волн.

3. Резонансное усиление нейтронного волнового поля

Рабочее совещание по синхротронным и нейтронным исследованиям конденсированных сред, Дубна, 1995 г.

Стоячая волна Рентгена чувствительна и совершенна. Она тотчас дает ответ, На месте атом или нет, И далека ль от идеала Поверхность ценного кристалла. (Б.К.Вайнштейн)

Knowles J.W. *Нейтронные стоячие волны. Первое наблюдение.* // Acta Cryst. 1956. V. 9. P. 61. _{РПН ЛНФ 2024/ 24}

Resonance Enhanced Neutron Standing Waves in Thin Films

S.K.Satija et al. (NIST, Gaithersburg) Materials Res. Symp. Proc. Vol. 376. P. 259 (1995)

Условие резонансного усиления

Оптический потенциал для генерации стоячих волн при полном отражении.

При формировании стоячей волны у волновой функции нейтрона появляются фиксированные в пространстве максимумы и минимумы, параллельные границам раздела.

Поглощающий нейтроны тонкий слой области В ослабляет стоячей максимума волны заметно нейтронный пучок и увеличивает выход продуктов ядерной реакции.

Аксенов В.Л., Игнатович В.К., Никитенко Ю.В. Нейтронные стоячие волны в слоистых системах. Кристаллография. 2006. Т. 51. № 5. С. 23-43.

Резонансное усиление вторичного излучения

Вверху: зависимость от длины волны нейтронов λ коэффициента отражения зеркально отражённых нейтронов $R(\lambda)$, точки – экспериментальные данные, сплошная кривая – расчёт. Внизу: экспериментальная зависимость от длины волны нейтронов λ интенсивности счёта альфа частиц и тритонов $I(\lambda)$, образованных захватом нейтронов ядрами изотопа ⁶Li (σ = 945 барн).

Никитенко Ю.В., Петренко А.В., Гундорин Н.А., Гледенов Ю.М., Аксенов В.Л. *Изотопно*идентифицирующая рефлектометрия нейтронов. Кристаллография. 2015. Т. 60. № 4. С. 518–532.

Резонансное усиление поляризованной В.Ф.

0.2 Q, nm⁻¹ 0.3

Коэффициент отражения без переворота и с переворотом для тонкой пленки Cu/V/Fe. Peculiarities of magnetic states in FM/SC heterostructures due to the proximity effects. J. of Physics: Conf. Series **211** (2010) 012022. (Yu. Khaydukov et al.)

Обратный эффект близости в СП/ФМ структуре

Cu(33nm)/V(40nm)/Fe(1nm)/MgO (Ю.Н. Хайдуков и др., 2010)

В СП слое наблюдается наведенная намагниченность в результате влияния магнитного слоя на сверхпроводящее состояние

Регистрация вторичного излучения на спектрометре РЕМУР

Схема спектрометра РЕМУР на реакторе ИБР-2

Канал регистрации гамма-квантов

Канал регистрации гаммаквантов и позиция образца

Коэффициенты отражения нейтронов и гамма-квантов

РПН ЛНФ 2024/ 29

Каналы регистрации заряженных частиц и поляризованных нейтронов

Zhaketov V.D. et al. // Surface, Volume 6, pp. 20-30 (2019) Zhaketov V.D. et al. // Surface, volume 6, pp. 1-15 (2021))

Диссертации

Кандидатские:

В.В.Пасюк, Л.П.Черненко, В.И.Боднарчук, С.В.Кожевников, К.Н.Жерненков, М.Н.Жерненков, Ю.Н.Хайдуков

Докторские: Ю.В.Никитенко, С.В.Кожевников

КЛАССИЧЕСКИЙ УНИВЕРСИТЕТСКИЙ УЧЕБНИК

В. Л. Аксенов, А. М. Балагуров

ОСНОВЫ НЕЙТРОНОГРАФИИ

Рефлектометры на реакторе ИБР-2

0÷160 0÷160 REMUR 0+500÷50 18800 C3 (0+150)x180 40x100 D1 PSD SF 4200 Ø200 Ø200 10x100 8100 500 4450 9500 20500 200x100mm 26200 4900 29000

REFLEX

РПН ЛНФ 2024/ 34

5. Направления развития

1. Рефлектометры на реакторе Нептун (В.Д. Жакетов)

No.	Спектрометр	Назначение спектрометра	Замедлитель
1	Высокопоточный рефлектометр стандартного типа	Магнитная структура бислоёв и мультиструктур; Магнитная и ядерная структура поверхности и тонких магнитных слоёв Φ=10 ⁸ н/c/cм ² ΔQ/Q=10 ⁻² ÷10 ⁻¹	20 K / 300 K
2	Рефлектометр для исследования жидкости с горизонтальной геометрией	Свободная поверхность жидкостей, магнитные жидкости, биологические системы, полимерные плёнки Δ <i>Q</i> / <i>Q</i> =10 ⁻² ÷10 ⁻¹	20 K / 300 K
3	Рефлектометр низкочастотной динамики	Диффузия и колебания макромолекул и кластеров на поверхности и в слоях структуры Δ <i>Q</i> / <i>Q</i> =10 ⁻¹ ÷0.5 Δ <i>E</i> =1÷10 пэВ ~кГц	20 K / 300 K
4	Рефлектометр высокого разрешения с регистрацией вторичного излучения	Магнитная и ядерная структура единичной границы раздела слоистой структуры Δ <i>Q</i> / <i>Q</i> =10 ⁻³ ÷10 ⁻⁴	20 K / 300 K

$$\delta\theta = (s_1 + s_2)/l \qquad \frac{\delta\lambda}{\lambda} \sim \tau/L$$

Нужен поток в 10 раз больше, чем на ИБР-2

Новые методы (пример)

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

14-2007-178

На правах рукописи УДК 538.97

ЖЕРНЕНКОВ Михаил Николаевич

РЕФЛЕКТОМЕТРИЯ С ЛАРМОРОВСКОЙ ПРЕЦЕССИЕЙ НЕЙТРОНОВ ДЛЯ ИЗУЧЕНИЯ МНОГОСЛОЙНЫХ СТРУКТУР

Специальность: 01.04.07 — физика конденсированного состояния

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 2007

- Угловое кодирование с ларморовской прецессией нейтронов, основанное на комбинации нейтронной рефлектометрии и нейтронного резонансного спин-эха.
 Позволяет выйти за рамки борновского приближения искаженных волн.
- Ларморовская псевдо-прецессия
 позволяет определять абсолютное
 направление вектора намагниченности в
 плоскости пленки, что невозможно в
 традиционной рефлектометрии.

2. Фундаменталные вопросы нейтронной оптики

Владимир Казимирович Игнатович (17.08.1937 – 14.09.2020)

Korneev D.A., Bodnarchuk V.I., Yaradaikin S.P., Peresedov V.F., **Ignatovich V.K.,** Menelle A., Gaehler R. *Reflectometry studies of the coherent properties of neutrons //* Physica B. 2000. V. 276– 278. P. 973–974.

Корнеев Д.А., Игнатович В.К., Ярадайкин С.П., Боднарчук В.И. Отражение нейтронов от потенциалов с размытыми ераницами. Препринт ОИЯИ 34-2002-181. Дубна, 2002. Из дневника Д.А.Корнеева (1974 г.) «Мы не хотим получать ерундовые задачи ... Мы мечтаем о сверхзадачах и чтобы, если справимся, – гордиться этим всю жизнь».

Дмитрий Анатольевич Корнеев (8.03.1946 – 22.01.2002)

Благодарю

за внимание

Рефлектометр ГРЭЙНС

Исследованы температурные зависимости (диапазон 15 – 150 °C) структуры тонких пленок полимерных нанокомпозитов (полистирол –фуллерен C₆₀/C₇₀ с низким, до 1 масс. %, содержанием наночастиц) в окрестности температуры стеклования полимерной матрицы).

Для фуллереном пленок C₆₀ С стеклования температура композитной пленки понижается сравнении В С значением для известным чистого полимера в объеме.

Для пленок с фуллереном C₇₀ отклонение от стандартного поведения при высоких температурах указывает на частичную деградацию пленки.

Таким образом, симметрия взаимодействия нанопримесей в композите (этим принципиально различаются два вида фуллерена С₆₀ и С₇₀) является существенным фактором, определяющим его температурную устойчивость.

Рис. 22. Определение температуры стеклования композитных полимерных пленок (d-полистирол/фуллерен) с помощью нейтронной рефлектометрии.

Слева – кривые зеркального отражения для тонкой пленки композита с содержанием фуллерена С₆₀ 0.3 масс. % при разных температурах. Данные получены на рефлектометре ГРЭИНС, ИБР-2.

Справа – зависимости приведенной толщины пленок для образцов dполистирол/С₆₀ с разным содержанием фуллерена и разной толщиной начальной пленки, *h*₀ (*T*=45 °C).

Пунктирными линиями представлены линейные температурные зависимости для коэффициентов объемного расширения до и после температуры стеклования.

Годовой (2023) отчет по теме, Д.П.Козленко: Тропин Т.В., Авдеев М.В., Аксенов В.Л. (2023, в печати)