

Новые трековые детекторы на основе сцинтилляционных волокон (SciFi) и их применение в физике высоких энергий, астрофизике и медицине.

Алексанр Малинин НИЦ КИ, МИФИ

ЛНФ ОИЯИ, 14th июня 2023 г.

History of the Scintillating Fibre Trackers with SiPM readout

14-06-2023

LHCb Detector Upgrade

- Goal: 50 fb⁻¹ integrated luminosity
 - increase the statistics significantly (rare decays)
 - limited by 1 MHz hardware trigger, and
 - limited by detector occupancy
- Major upgrade during LS2 in 2020
- new VELO
- replace TT with new silicon micro-strip detector
- replace IT (silicon) & OT (straws) with SciFi tracker (scintillating fibres, SiPM array sensors), to achieve
- 40 MHz detector readout \rightarrow full software trigger!
- RICH: new photon detectors
- Calorimeter: remove SPD/PS, new readout
- Muon System: remove M1, new readout.

14-06-2023

А. Малинин – Новые трековые детекторы SciFi

3

LS2 Replacement of the downstream tracker **Requirements:** LHCb tracker upgrade • 40MHz readout • resolution <100µm • high efficiency; low noise • minimize budget material in acceptance • operations up to 50fb⁻¹ ECAL HCAL SPD/PS M4 M5 M3 RICH2 M1 M2 Magnet RICH1 *lertex*

LHCb SciFi Tracker

readout

mirror

readout

~6m

• Layout :

- 12 layers arranged in 3 tracking stations
- each station with 4 planes of scintillating fibre modules (two planes tilted by ±5° stereo angle)
- T1+T2: 10 modules per layer, T3: 12 modules
- in total: 128 modules, 1024 fibre mats + spares
- 340 m² sensitive area
- readout boxes with light injection system for calibration
- Requirements :
 - single hit efficiency ~99%
 - material budget per layer ~1% X₀
 - single point resolution < 100 µm in bending plane
 - 40 MHz readout
 - radiation hardness (up to 35 kGy for fibres near beam pipe)

14-06-2023

А. Малинин – Новые трековые детекторы SciFi

Beam direction

5m

T2

T1

Tracking with four 10 x 10 cm SciFi XY detectors and 12 bit ASIC (VATA64HDR14) readout

Hit resolution σ_{hit}

- At the DUT: $\sigma_{\text{Residual}}^2 = \sigma_{\text{hit}}^2 + \sigma_{\text{track}}^2$
- $\sigma_{
 m hit}$ same for all layers:

 $\sigma_{\rm hit} = 32 \mu m \implies \sigma_{\rm track} = 16 \mu m$

Hit detection efficiency $\epsilon_{\rm hit}$

- At the best hit resolution: $\varepsilon_{hit} = 99.6\%$
- Track finding efficiency ~98.6%
- Reduce the number of tracks with multiple scattering: cut on track χ^2
- Reject events with high energy delta electrons
- > At SPS: $\varepsilon_{\text{track}} = 50\%$ used tracks

O. Girard – BTTB6, Zürich, 2018

14-06-2023

SciFi Principle

- Staggered layers of 250 µm thin, double-clad scintillating fibres, to form a 6-layered hexagonal packed mat
- Read out by the SiPM arrays covering one fibre mat end face
- Signal is shared between the adjacent SiPM array channels allowing for a resolution better than pitch / $\sqrt{12}$
- Mirror opposite to readout end increases the light yield by ≥ 65% for the hits close to the mirror.

14-06-2023

14-06-2023

Fibre Mats

Threaded

winding wheel

- 8 km of fibre per mat (242.4 cm long, 13.65 cm wide mat)
- Kapton lamination foil for mechanical stability and light-tightness
- Detailed QA at production sites: geometry and light yield
- Glue alignment pins inherit precision of the wheel to mats.

14-06-2023

Fibre Modules

Radiation Hardness

- Light yield decreases with radiation dose (35 kGy near beam pipe over full lifetime, 60 Gy at SiPMs)
- Expected signal reduction of 40% near the beam pipe.

14-06-2023

Hamamatsu MPPC S10943-3183(X)

SiPM arrays

• 128 (2x64) channel SiPM arrays

- 250 µm channel pitch (= fibre diameter)
- high photon detection efficiency ~45%
- low crosstalk probability < 10%
- neutron fluence $1 \cdot 10^{12} n_{eq}^{2}/cm^{2}$ (1 MeV)
 - \rightarrow cooling needed to reduce noise
- small distance between fibres and silicon.

14-06-2023

 $4 \times 26 = 104$ pixels

per channel

SiPM arrays Hamamatsu S10943

Each SiPM array has 128 channels (consists of two silicon chips). The SiPM is working at 3.8 $\times 10^6$ amplification, which gives 0.6 pC signal per photoelectron, if a single pixel was hit. For all 104 pixels of a single channel fired the maximum output signal is 63 pC.

14-06-2023

Inside the FE cold box

- SiPM dark count rate increases with radiation dose (60 Gy at the end of LHC Run 3)
- DCR reduction by factor 2 for every ~10°C cooling
- Single phase Novek (649) cooling for SiPM arrays down to -40°C.

14-06-2023

- Clusterisation board: cluster building and zero suppression
- Master board: transfers the data and distribute the signals, fast control, timing, clock, light injection pulse, and slow control.

14-06-2023

Test Beam Results

- Measured at SPS180 GeV p/π^+ secondary beam:
- Light yield: 16 p.e.
- Hit efficiency: 99%

near the mirror

SciFi mass production centres

14-06-2023

14-06-2023

14-06-2023

SciFi winding machine at NRC KI

14-06-2023

Winding wheel made at NRC KI

Maximum wheel deviation from an ideal shape is less than 70 µm.

Wheel's pin hole alignment with respect to the thread is better than 20 µm.

14-06-2023

SciFi mat after the binder polymerisation is removed from the winding wheel:

Mat cutting with a hot knife.

Removal from the wheel.

14-06-2023

Then the polycarbonate end-pieces glued at the mat ends and cut through to the right size;

the optical scan is performed on a test bench;

after the tests mirror is mounted on one end.

14-06-2023

NRC KI SciFi alignment pins position accuracy (in microns) measured by a laser beam at DU.

14-06-2023

SciFi light yield test setup at NRC KI

Measurements with ⁹⁰Sr radioactive source:

View from mirror end of the mat.

View from the readout side of the mat.

14-06-2023

SciFi readout electronics at NRC KI

14-06-2023

Light yield test online display

14-06-2023

Production SciFI light yields at NRC KI

14-06-2023

SciFi modules test setup at CERN

Measurements with cosmic muons:

View from the test setup side.

View from the readout side of the modules.

14-06-2023

SciFi modules test setup at CERN

Measurements with cosmic muons:

View from the readout side.

The module cold box with the signal connectors.

14-06-2023

SciFi planes integration at CERN

First the modules were assembled in tracker planes at the ground surface:

Assembly scaffoldings in the surface building.

SciFi tracker plane before moving down to LHCb.

14-06-2023

Then the SciFi tracker planes were installed in the LHCb experiment:

View of the LHCb experiment from the side. SciFi tracker plane 100 m underground.

14-06-2023

Then the SciFi tracker planes were installed in the LHCb experiment:

The first SciFi tracker plane being installed.

Work on the SciFi tracker installation.

14-06-2023

Then the SciFi tracker planes were installed in the LHCb experiment:

The first SciFi tracker plane is installed.

Connecting services and labelling.

14-06-2023

Then the SciFi tracker planes were installed in the LHCb experiment:

The SciFi tracker is installed.

View on the beam pipe, the planes are moved apart.

14-06-2023

LHCb SciFi tracker in place - January 2022

View from the beam pipe and magnet. SciFi tracker is closed.

View from the experiment's side.

14-06-2023

27 October 2022 – SciFi is in LHCb trigger!

14-06-2023

Summary 1

- Large area (340 m²) high resolution (<70 µm) scintillating fibre tracker read out with 128 channel SiPM arrays.
- 5 m long fibre modules with \geq 18p.e./MIP light yield and 99% efficiency!
- Production has started in 2016 at 4 production centres (one in Russia).
- Installation started in 2019, finished in 2021, working in LHCb 2022 run.
- Close collaboration of 18 institutes in 9 countries.

14-06-2023

14-06-2023

- Поиски непрямых сигналов (гамма-линий) от аннигиляции частиц тёмной материи.
 - Поиски эффектов квантовой гравитации (QG) в кривых блеска гамма-всплесков (GRB).

 Улучшить пространственное, энергетическое и временное разрешение телескопа ГАММА-400.

14-06-2023

Мотивация: поиски эффектов квантовой гравитации (QG)

Каральний истеровательский адерный университет

АКЦ ФИАН

Набдюдение GRB 090510 телескопом Fermi-LAT измерения запаздывания в энергетических бинах.

• Красное смещение z = 0.9 (расстояние L = 5.381 Gyr)

 Регистрация фотона с Е = 31 ГэВ через 851 мсек после триггера.

M_{QG} > 1.2 M_{Planck}

M_{Planck} ≈ 1,2209 · 10¹⁹ ГэВ/с²

• Запаздывания на источнике? Линейный рост с LGRB?

Table 2 | Limits on Lorentz Invariance Violation

t _{start} -T ₀	Limit on	Reasoning for choice of t _{start}	E, [†]	Valid	Lower limit on
(ms)	∆t (ms)	or limit on Δt or $ \Delta t/\Delta E $	(MeV)	for s _n *	M _{QG,1} /M _{Planck}
-30	< 859	start of any < 1 MeV emission	0.1	1	> 1.19
530	< 299	start of main < 1 MeV emission	0.1	1	> 3.42
648	< 181	start of main > 0.1 GeV emission	100	1	> 5.63
730	< 99	start of > 1 GeV emission	1000	1	> 10.0
—	< 10	association with < 1 MeV spike	0.1	±1	> 102
—	< 19	If 0.75 GeV [‡] γ-ray from 1 st spike	0.1	-1	> 1.33
∆t/∆E <3	30 ms/GeV	lag analysis of > 1 GeV spikes	—	±1	> 1.22
	UNR/EDGIDAD AUTO	MARKE O A IVE CATHOODIATICO IVIACIO	പാവം	20.170	
	t _{start} -T ₀ (ms) -30 530 648 730 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

14-06-2023

Конструкция SciFi-модуля конвертера-трекера:

14-06-2023

С.А. ЛАВОЧКИНА

ИНСТИТУТ КОСМИЧЕСКИХ

ИССЛЕДОВАНИЙ РАН

43

Конструкция SciFi-модуля конвертера-трекера:

. . .

C

C

АКЦ ФИАН

	space-based gamma-ray telescopes							
	Medium energy		High-energy			,	based facility	
	e- ASTROGAM	AMEGO	Fermi- LAT	GAMMA- 400	HERD	AMS- 100	СТА	
Country	Europe	USA	USA/ Europe	Russia	China/ Europe	Europe + USA		
Energy range for gamma rays	0.3 MeV– 3 GeV	0.2 MeV– 10 GeV	50 MeV– 1 TeV	20 MeV– 1 TeV	0.5 GeV– 10 TeV	1 GeV– 10 TeV	> 50 GeV	
Observation mode	Scanning	Scanning	Scanning	Point- source	Scanning	Scanning	Scanning	
Orbit	Circular, ~550 km	Circular, ~550 km	Circular, ~550 km	Highly elliptical, 500– 300 000 km	Circular, ~400 km	L2	-	
Angular resolution	0.1° (Ε _γ = 1 GeV)	1° (Ε _γ = 1 GeV)	0.1° (Ε _γ = 100 GeV)	$\sim 0.01^{\circ}$ (E ₇ = 100 GeV)	0.1° (E ₇ = 100 GeV)	$\sim 0.01^{\circ}$ (E ₇ = 100 GeV)	0.1° (E ₇ = 100 GeV)	
Energy resolution	20% (E ₇ = 1 MeV)	10% (E _γ = 1 GeV)	10% (E ₇ = 100 GeV)	$\sim 2\%$ (E ₇ = 100 GeV)	1-2% (E _γ = 100 GeV)	1-2% (E _γ = 100 GeV)	15% (E _γ = 100 GeV)	

14-06-2023

С.А. ЛАВОЧКИНА

14-06-2023

Summary 2

- После Fermi-LAT миссия GAMMA-400 значительно улучшит прямые данные о потоках низкоэнергетического и высокоэнергетического гамма-излучения, а также электронов + позитронов.
- Благодаря применению детекторов SciFi удалось добиться рекордных углового и энергетического разрешения, при высоком временном разрешении и большом поле зрения.
- Выбранная схема телескопа позволяет вести непрерывные, многолетние, коаксиальные гамма- и рентгеновские наблюдения.

 Запуск космической обсерватории ГАММА-400 запланирован на ~2030 год.

14-06-2023

ЛРБ

Изготовление прототипа ХҮ-детектора SciFi для томографии.

14-06-2023

ЛРБ

Измерения на прототипе XY-детектора SciFi с источником ⁹⁰Sr

14-06-2023

Измерения на прототипе ХҮ-детектора SciFi с ү-квантами.

14-06-2023

ЛРБ

14-06-2023

Исследовательский реактор ИР-8 в НИЦ КИ, канал 7А:

- Использование компактного сильноточного ускорителя протонов RFQ непрерывного действия и тонкой литиевой мишени обеспечивает значительно большие интенсивности (и потоки) тепловых нейтронов для целей БНЗТ, что является одним из основных требований данного метода лечения рака.
- 2) Ускоритель RFQ является российским изобретением и может быть, в настоящее время, построен из полностью российских компонентов и материалов (бескислородная вакуумная медь высокой чистоты для ускоряющих элементов RFQ производится на заводе «Кристалл», Владикавказ, мощные источники СВЧ производятся компанией «Триада-ТВ», Новосибирск).

Тонкая литиевая мишень с регенерацией обеспечивает точечный, долгоживущий источник нейтронов с одновременной минимизацией фонового потока гамма-квантов.

Summary 3 (continued)

- 4) Для контроля, визуализации и управления процессом БНЗТ будут использованы отечественные детектирующие системы, для чего планируются исследования двухкоординатного детектора SciFi, (на основе сцинтиллирующих оптоволоконных сборок), в том числе измерения на гамма-квантах, рождающихся при захвате теплового нейтрона. Целью работ является создание гамма-камеры однофотонного томографа, способного работать в присутствии значительных фонов тепловых нейтронов и обладающего рекордным пространственным разрешением.
- 5) Задел в области применения клеточных сенсибилизаторов и методик селективного введения препаратов бора-10 в опухоль, а также использование методик управления кровотоком в поражённой области, обеспечит дополнительный фактор роста эффективности применения БНЗТ терапии.

Спасибо за внимание!

14-06-2023