

РУ МБИР с натриевым теплоносителем. Технические характеристики реактора. Внутризонные и закорпусные экспериментальные возможности

Семинар / ОИЯИ, г.Дубна

Клинов Дмитрий Анатольевич Заместитель научного руководителя по перспективным тематикам, АО «ГНЦ РФ – ФЭИ»

Цели и задачи проекта МБИР

Начало проекта: 2006 г: Первый инициативный отчёт НИКИЭТ: «Инженерно-физический облик НБИР, включая стоимостные оценки и предложения по организации работ по разработке проекта» 22 ноября 2007 г. на заседании НТС № 1 ГК «Росатом» <u>принято решение</u> о создании многофункционального высокопоточного исследовательского реактора на быстрых нейтронах. Цель сооружения МБИР: создание высокопоточного исследовательского реактора на быстрых нейтронах с уникальными потребительскими свойствам, сохранение и развитие экспериментальной

базы атомной энергетики Российской Федерации.

Задачи МБИР:

- проведение реакторных и послереакторных исследований;
- отработка новых технологий производства радиоизотопов и модифицированных материалов;
- испытания и апробация новых типов оборудования различных технологических систем;
- Сопутствующая: производство электроэнергии и тепла.

Конструктивные особенности и технические характеристики ИЯУ МБИР

Наименование параметра	Значение
Номинальная тепловая мощность реактора, МВт	150
Максимальная / средняя плотность потока нейтронов в активной зоне, см ⁻² ·с ⁻¹	5,3×10 ¹⁵ / 3,1×10 ¹⁵
Шаг установки элементов а.з., мм	75
Количество ТВС в активной зоне, шт	93
Количество твэл в одной ТВС, шт	91
Количество ячеек в активной зоне под установку материаловедческих или изотопных сборок	14
Количество ячеек под установку экспериментальных каналов	3
Количество ячеек под установку одного петлевого канала	7
Количество петлевых каналов в активной зоне / боковом экране	1/2
Тип топлива штатных ТВС	Смешанное оксидное уран-плутониевое
Массовая доля PuO ₂ в МОКС-компоненте виброуплотненного топлива подпитки, %	38,8
Высота топливной части твэл, мм	550
Компоновка РУ	Петлевая
Количество теплоотводящих петель	2
Количество контуров теплоотвода	3
Теплоноситель I, II контуров	Натрий
Направление движения потока теплоносителя через активную зону реактора	Снизу вверх
Принцип теплоотвода от активной зоны реактора	Принудительная циркуляция при работе реактора на мощности. Естественная циркуляция на остановленном реакторе
Защитная среда в газовых полостях корпуса реактора и кожуха страховочного	Аргон
Проектный срок службы реактора, лет	50
Длительность работы между перегрузками топлива, эфф. суток	100
Время останова реактора на ППР, включая перегрузки, сутки	35 – 45 4
Коэффициент использования реактора	0,65

Конструктивные особенности ИЯУ МБИР

Первый контур

Параметр	Значение
Температура теплоносителя I контура:	ĺ
- на входе в реактор, °С	330
- на выходе из реактора, °С	512
Расход натрия через реактор, кг/с	650
Давление в первом контуре, МПа	не более 0,7
Промежуточный теплообменник : - тепловая мощность, МВт	72
Аварийный теплообменник: - тепловая мощность, МВт	3
Главный циркулярный насос: - производительность, м ³ /ч	1350

Конструктивные особенности ИЯУ МБИР

ФЭИ РОСАТОМ

Второй контур

Параметр	Значение
Температура теплоносителя II контура: - на входе в ПТО, °С - на выходе из ПТО, °С	298 479
Расход натрия через ПТО, кг/с	310
Парогенератор обратного типа: - тепловая мощность, МВт	72 (3 модуля по 24 МВт)
Электромагнитный насос: - производительность, м ³ /ч	1268
Давление номинальное, МПа	0,5

Конструктивные особенности ИЯУ МБИР

Контур САОТ

BTO

Параметр	Значение
Аварийный теплообменник : - тепловая мощность, МВт	3
Температура теплоносителя контура САОТ: - на входе в АТО, °С - на выходе из АТО, °С	293 486
Расход натрия в контуре через АТО, кг/с	12,12
Воздушный теплообменник : - тепловая мощность, МВт	3
Электромагнитный насос контура САОТ : - производительность, м ³ /ч	49,5
Давление номинальное, МПа	0,0033

Экспериментальные возможности – материаловедческая сборка

4			Параметр	Значение	
n –	Внутренная		Размер «под ключ», мм	72,2	
		трубка	Высота, мм	2 700,0	
	17	Подвеска с образцами	Полезный объем сборки, см ³	2 280,0	
		Экспериментальные	Количество сборок (а.з.)	14	
		образцы	Количество сборок (1 ряд бланкета)	до 36	
	Чехол		Мощность дозы в а.з., сна/год *)	20÷24	
			Мощность дозы (1 ряд бланкета), сна/год * ⁾	14÷17	
			Максимальный флюенс нейтронов, (En > 0,1 МэВ), см ⁻²	1,5×10 ²³	
		 Четыре варианта конструкции сборки в зависимости от формы внутренней трубк (круглая или шестигранная) и режима циркуляции натрия на входе (из камер высокон или низкого давления) 			
	•	Разработка констру спецификациями в зав Конструкция сборки облучению, провод облучательных устрой МБИР	кции подвески с образцами ведется п зисимости от экспериментальных задач Потребите предусматривает продолжение экспериментов имых на БОР-60. Два полномасштабн іства БОР-60 могут быть помещены в чехле сбор	о отдельным еля по ых жи	

Экспериментальные возможности – петлевой канал

	Параметр канала*	Значение
Вход т/н	Общая высота петлевого канала, мм	11900
холодильника ПК Выход т/н холодильника ПК	Наружный диаметр петлевого канала (на уровне а.з.), мм	100
Выход т/н	Температура теплоносителя ЭТВС (на входе/на выходе), °С	До 600 / До 900**
📕 — Вход т/н ЭТВС	Температура теплоносителя на выходе из ПК, °С	До 600
	Высота активной части ЭТВС, мм	550
OTBC	Расход натрия через ЭТВС, кг/с	До 2,85
Петлевого канала	Расход натрия через основной контур ПК, кг/с	До 6,00
	Параметр ТВС	Значение
	Размер «под ключ» чехла ЭТВС, мм	47,0
Ловушка а.з.	Длина твэл, мм	1245
	Мощность, кВт	До 1100
TT	*) параметры приведены для натриевого петлевого	канала

**) режим с кипением теплоносителя

Экспериментальные возможности – экспериментальный канал (ЭК)

Параметр ЭК Рb-Bi	Значение
Общая высота, мм	10890
Размер «под ключ», мм	72,2
Наружный /внутренний диаметр цилиндрической крышки на уровне а.з., мм	68,0 / 65,0
Расход теплоносителя в камере Pb-Bi, кг/с	До 6,0
Макс. Температура теплоносителя (в независимой камере Pb-Bi), °C	390±10
Наружный/внутренний диаметр ТВС, мм	45,0 / 41,0

- ЭК позволяют проводить:
 - исследования конструкционных и топливных материалов в заданной среде с измерением и контролем температуры облучения (320÷1800 °С);
 - свойств - внутриреакторные исследования механических
- Конструкция инструментованных устройств разрабатывается по отдельным спецификациям в зависимости от экспериментальных задач Потребителя

Экспериментальные возможности ИЯУ МБИР

Камера нейтронной радиографии 7,1 м (длина) × 4,1 м (ширина) × 2,9 м (высота)

ВЭК

8 вертикальных экспериментальных каналов:

- для ядерного легирования кремния (6 каналов.)
- для нейтронно-активационного анализа (2 канала)

ГЭК

6 горизонтальных экспериментальных каналов:

- для нейтронной радиографии
- для физических исследований
- для медицинского применения

Установка легирования кремния

Экспериментальные возможности ИЯУ МБИР

Экспериментальный объем	Место размещения	Количество ЭУ	ППН, на уровне ц.п.а.з., 10 ¹⁵ см ⁻² ·с ⁻¹	Размер, мм	
Петлевые каналы				D 100,	
центральный периферийные	Центр а.з. 1-й и 3-ий ряд БЭ	1 2	4,9 2,1 / 1,3	семь ячеек размером «под ключ» 72,2 каждая	
Инструментованные экспериментальные каналы	a.3.	3	До 4	Ячейка размером «под ключ» 72,2	
Ячейки для размещения материаловедческих и изотопных сборок	a.3.	До 14	2,4 - 4,7	Ячейка размером «под ключ» 72,2	
Вертикальные	За корпусом реактора в защите тепловой на R1675 мм	6	0,0124	D 342	
каналы	За корпусом реактора в защите тепловой на R2670 мм	2	1,59×10 ⁹ *	D 34	
* Данные представлены без пересчета на 10 ¹⁵ см ⁻² ·с ⁻¹ .					

Экспериментальные возможности ИЯУ МБИР

Характеристики на выходе из горизонтальных экспериментальных каналов МБИР

Функционал	ГЭК-1, см ⁻² ·с ⁻¹	ГЭК-2, 3, см ⁻² ·с ⁻¹	ГЭК№4, см ⁻² ·с ⁻¹	ГЭК№5, см ⁻² ·с ⁻¹	ГЭК-6, см ⁻² ·с ⁻¹
ППН Е>0,1 МэВ	3,28×10 ⁹	9,00×10 ⁸	-	8,36×10 ⁹	3,28×10 ⁹
ППН 0,01 МэВ< Е≤0,1 МэВ	2,06×10 ⁹	1,42×10 ⁹	-	8,73×10 ⁹	2,06×10 ⁹
ППН 0,4 эВ< Е≤0,01 МэВ	4,51×10 ⁹	2,45×10 ⁹	2,40×10 ⁵	1,38×10 ¹⁰	4,51×10 ⁹
ППН Е≤0,4 эВ	2,38×10 ⁸	6,79×10 ⁷	3,69×10 ⁵	1,34×10 ⁹	2,38×10 ⁸
Назначение канала	Физические исследования	Физические исследования	Нейтронно- радиографи- ческие исследования	Физические исследования	Физические исследования
Размещение ГЭК	За корпусом реактора				
Диаметр ГЭК, мм	D180				

Актуальность задач для нейтронзахватной терапии (H3T)

Принцип НЗТ прост и элегантен: ядро В¹⁰, доставленное в опухоль, захватывает тепловой нейтрон им производит плотноионизирующие частицы (пробег 4 – 9 µм), которые локально в пределах клетки разрушают опухоль, не причиняя вреда здоровой ткани.

Соединение, содержащее В¹⁰, вводится внутривенно и избирательно накапливается в опухоли.

Практическое применение H3T стартовало в первой половине 50-гг XX в. на пучках реакторов: Брукхэйвенского медицинского реактора и реактора в Массачусетском университете.

Наибольшие успехи НЗТ на начальном этапе были достигнуты, кроме USA, в Японии и Южной Корее, позже в Финляндии и Нидерландах.

Быстро обнаружился основной недостаток применённых источников: малая интенсивность пучков; на первых реакторах были применены конвертеры тепловых нейтронов (фактически «бустеры»), делением U⁵ поднимающие интенсивность выходящего пучка.

В 50-60е годы сложилась классическая парадигма НЗТ, опирающаяся на полученный опыт:

- 1. Интенсивность требуемого пучка эпитепловых нейтронов не менее 10⁹ см⁻²с⁻¹;
- 2. Минимальное «загрязнение» пучка гамма-излучением, а также тепловыми и быстрыми нейтронами.

Развитие НЗТ

Развитие H3T было «подстёгнуто» появлением:

1) новых мощных источников, основанных на применении ускорителей

(в т.ч. источников фотоядерных нейтронов) и нейтронных генераторов;

2) новой организацией вывода реакторных пучков.

Реактор МБИР:

1. Нейтроны «отбираются» в непосредственной близости к АЗ;

- 2. Канал, выводящий пучок, обладает максимальной «светосилой»;
- 3. Жёсткий спектр нейтронов на выходе канала;
- 4. Большая плотность потока нейтронов на выходе канала.

С появление новых мощных источников нейтронов (прим. ускоритель) требуется максимально интенсивный исходный пучок с нейтронами достаточно высокой энергии.

Его доработка выполняется модератором и «фильтрами», и входящий в ткань пучок формируется переменной толщиной модератора, таким образом, чтобы максимальная плотность тепловых нейтронов реализовывалась в локализации опухоли.

Преимущества горизонтальных экспериментальных каналов

- Уникально большой диаметр;
- Вход канала непосредственно примыкает к АЗ;
- Большая плотность материала АЗ;
- Жёсткий спектр нейтронов на выходе канала;
- Большая плотность потока нейтронов на выходе канала.

Характеристики ГЭК, опорные данные

Радиальное сечение расчётной модели на высоте центра АЗ

Выполнены прецизионные расчёты плотности потока нейтронов для каналов №№2, 6 в 299групповом энергетическом приближении (ABBN-93)

Транспорт нейтронов рассчитан с помощью кода MCNP5 и библиотеки TENDL

Результаты нормированы на мощность реактора 150 МВт

Плотность потока нейтронов на выходе канала, <i>см</i> -2 <i>с</i> -1					
	Канал №2 Канал №6				
$0 < E < 0.4 \cdot 10^{-6} \text{ M}_{\Im}B$	3.73E+09	1.25E+09			
0.4·10 ⁻⁶ <e <0.1="" td="" мэв<=""><td>27.3E+09</td><td>12.3E+09</td></e>	27.3E+09	12.3E+09			
E > 0.1 M ₃ B	19.5E+09	11.1E+09			
Σ	50.5E+09	24.7E+09			

НЗТ характеристики

Формирование дозы при НЗТ:

$$\begin{split} D_{tumor} &= C E \mathcal{P}_{B,tumor} \cdot D_{B,tumor} + O E \mathcal{P}_{N} \cdot D_{N} + O E \mathcal{P}_{O} \cdot D_{O} + O E \mathcal{P}_{fast} \cdot D_{fast} + O E \mathcal{P}_{\gamma} \cdot D_{\gamma}, \\ D_{tissue} &= C E \mathcal{P}_{B,tissue} \cdot D_{B,tissue} + O E \mathcal{P}_{N} \cdot D_{N} + O E \mathcal{P}_{O} \cdot D_{O} + O E \mathcal{P}_{fast} \cdot D_{fast} + O E \mathcal{P}_{\gamma} \cdot D_{\gamma}. \end{split}$$

(In air) Характеристики пучков для H3T

	Ф _{ері} ,	D _γ /Φ _{epi} ,	D_{fast}/Φ_{epi} ,	J_{epi}/Φ_{epi}
	см ⁻² с ⁻¹ ,	сГр∙см²,	сГр∙см²,	(«ток-к-потоку»)
	10 ⁹	10 ⁻¹¹	10 ⁻¹¹	
Значения, желательные для НЗТ	≥1	< 2–5	< 2–5	≥ 0.7
FCB MIT	(~4.2?)	1.3	4.3	0.8
МАРС	1.01	5.38	11.8	0.8
TAPIRO	0.788	6.77	8.49	0.8
МБИР, «голый пучок» канал №2	27.3 (?)			~ 1

НЗТ характеристики

Спектр нейтронов на выходе пучка

Адаптация пучка к НЗТ коллиматором

Выход пучка из коллиматора (n phantom) характеристики

Применяемые в расчетах фантомы:

- 1. Примитивный (цилиндр DxH = 20x20 см²)
- 2. Антропоморфный «реалистичный» (простые тела)
- 3. Антропоморфный воксельный (Zubal и др.)

(состав 4-х компонентная ткань ICRP)

Оценка характеристик пучка в фантоме

Задача: подведение терапевтической дозы 60 Гр-экв к опухоли в мягкой ткани Формирование дозы при H3T:

 $D_{tumor} = CE\mathcal{P}_{B,tumor} \cdot D_{B,tumor} + OE\mathcal{P}_N \cdot D_N + OE\mathcal{P}_O \cdot D_O + OE\mathcal{P}_{fast} \cdot D_{fast} + OE\mathcal{P}_\gamma \cdot D_\gamma,$ $D_{tissue} = CE\mathcal{P}_{B,tissue} \cdot D_{B,tissue} + OE\mathcal{P}_N \cdot D_N + OE\mathcal{P}_O \cdot D_O + OE\mathcal{P}_{fast} \cdot D_{fast} + OE\mathcal{P}_\gamma \cdot D_\gamma.$ **Состав: 18 ppm B¹⁰**для здоровой ткани (tissue) и 65 ppm для опухоли (tumor)

ФЭИ РОСАТОМ

Очистка пучка

- 1. Свинцовый (γ =11.336) шарик \oslash 29 см
- 2. Поток энергии гамма-излучения уменьшился в ~ 20 раз

3. Потери в потоке нейтронов довольно значительны и уточняются (оценка: ослабление полного потока ~ в 2 раза)

Помещения горизонтальных каналов

Высота потолков – 2,9 м

Спасибо за внимание!

Клинов Дмитрий Анатольевич

Заместитель научного руководителя по перспективным тематикам, АО «ГНЦ РФ – ФЭИ»

E-mail: <u>dklinov@ippe.ru</u>

26.06.2023