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Introduction: d-orbitals in a crystal, 
cubic harmonics
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Orbital degrees of freedom

Spin degrees of freedom

Math: ̂ ⃗Sspin operators

⟨ ↑ | ̂Sz | ↑ ⟩ = 1/2

for s = 1/2
⟨ ↓ | ̂Sz | ↓ ⟩ = − 1/2

Orbital degrees of freedom

̂ ⃗τpseudospin operators

t2g

e.g. Cu2+

⟨x2 − y2 | ̂τz |x2 − y2⟩ = − 1/2
x2 − y2

3z2 − r2 ⟨z2 | ̂τz |z2⟩ = 1/2
eg

Ligands
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2. Orbitals have directional 
character
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Orbitally-assisted Peierls effect

Orbital-selective Mott transition
Orbital-selectivity and Magnetism

1. Orbitals are coupled with other 
degrees of freedom

+2

Системы с взаимосвязью между различными  
степенями свободы

Объекты:
• Низкоразмерные магнетики; 
• Мультиферроики; 
• Сильнокоррелированные соединения 
переходных металлов; 

• Материалы при экстремальном воздействии; 
• Квантовый спиновые жидкости; 
• и др.

Решетка

Заряды

Спины

 
Орбитали

Goodenough-Kanamori-Anderson rules 
Jahn-Teller effect

Kugel-Khomskii-like models 

Orbital degrees of freedom

3. Spin-orbit coupling - beyond the scope of this lecture



Jahn-Teller effect

1. Interplay of different 
degrees of freedom: 



Let’s consider a model two-
levels (a & b) system in  

a certain surrounding  

∼ δ2

δJT−δJT

E

δ

Idea

Thus, the system aims to spontaneously lift orbital degeneracy  
by distorting surrounding

“Orbital-lattice”  
coupling

Elastic  
energy b

a

δ

E
EJT = ± g |δ | +

Bδ2

2
Coupling 

with lattice

a b

distortion (d)

Jahn-Teller effect in a nutshell



Introduction: Jahn-Teller             problem

eg

Q3 > 0 Q2 > 0
More realistic situation: 

eg-levels and E-distortions 
(i.e. Q2, Q3) 

e.g. Mn3+ or Cu2+

e ⊗ E

Q2

Q3

E

δJT−δJT

E

δ

Harmonic approximation: Highly degenerate ground state

Goldstone

ĤJT = − g( ̂τzQ3 + ̂τxQ2) +
B
2

(Q2
3 + Q2

2)EJT = ± g |δ | +
Bδ2

2

τz = 1/2

τz = − 1/2
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Q2

Q3
Anharmonicity

Elongated octahedra! Most of octahedra with eg-ions (Cu2+, Mn3+) are elongated!

Claimed compressed Turned out elongated

NaMn7O12 Nature Mat. 3, 48 (2004) PRB 89, 201115 (2014)
Cs2CuCl2Br2 Cryst. Gr. Des. 10, 4456 (2010) PRB 86, 035109 (2012)

|θ⟩ = cos(θ)Q3 + sin(θ)Q2

|θ⟩ = cos(θ/2) |z2⟩+ sin(θ/2) |x2 − y2⟩
Distortions:
Orbitals:

 parametrizes both distortions and orbitalsθ

τx(Q2)

τz(Q3)
3z2 − r2

3x2 − r2

3y2 − r2

θ

x2 − z2

y2 − z2

x2 − y2

Distortion Orbital

Introduction: Jahn-Teller             problem 
for an isolated octahedron

e ⊗ E



Cooperative Jahn-Teller distortions 
(electron-lattice mechanism of orbital ordering)

How to pack 
octahedra? 

We must keep V 
the same

Anharmonic effects 
stabilize this!

Ĥ = ∑
i≠j

Jij ⃗τi ⃗τj Jij ∼ g2/B

LaMnO3 (Mn3+, e1
g)

x2

y2

electrons are plotted

KCuF3 (Cu2+, e3
g)

x2 − z2y2 − z2

holes are plotted N. Perkins et al., Nature 
Communications 3, 1277 (2012)

chiral magneto-orbital helix and the global rotation, as described
by the phenomenological invariant asA !P, where a is a coupling
constant, s is the magnetic helicity, P is the electrical polarization
and A is an axial vector representing the structural rotation. It is
important to stress that the helicity of this particular magnetic
structure can be reversed by a global rotation of all the spins, so
that the symmetric-exchange energy of two inversion-related
domains must be the same. This implies that the spin–orbit
interaction is essential to couple magnetic helicity and
polarization, although striction effects can be important in
achieving large values of P17. The relevant microscopic
mechanism is the antisymmetric Dzyaloshinskii–Moriya (DM)
exchange, where energy can be gained by distorting the crystal
structure and/or the electronic density in the presence of non-
collinear spin configurations. Although both structural and
electronic distortions are allowed in the present case, we will
employ the former as an illustration. When two metal sites

carrying non-collinear spins are joined by common ligand
atoms (in this case Mn-O-Mn), energy can be gained by
displacing the ligand through a vector u so that DE¼
lu ! [r12# (S1# S2)]¼ lD ! (S1# S2), where S1 and S2 are the
spins on the two sites, r12 is the position vector connecting them
and l is a coupling constant. D¼ u# r12 is the familiar DM
vector18,19. Energy is, therefore, minimized by a pattern of local
ligand (oxygen) displacements u associated with pairs of spins
and either parallel or antiparallel to the vectors r12# (S1# S2),
depending on the sign of l. Figure 4b shows the pattern of
r12# (S1# S2) vectors (black arrows) for clusters of Mn2 around
a single Mn3. Assuming lo0, the DM interaction will favour
oxygen displacements parallel to these arrows, making the
Mn3þ -O-Mn4þ bonds between the red and the blue layer
flatter (that is, the bond angles closer to 1801) and Mn3þ -O-
Mn4þ bonds between the red and the green layer more acute
(that is, the bond angles farther from 1801). It is easy to see
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Figure 2 | The incommensurate structural modulation coupled to orbital rotation and valence fluctuations. (a) Variation in Mn2-O bond lengths along x,
y and z (coloured according to the schematic in Fig. 1c) as a function of Rz, plotted across 19 unit cells along the c axis. (b) Orbital mixing angle y for the Mn2
octahedra as a function of Rz. y correlates directly with orbital occupation, as shown by the circular inset. The orbital rotation is shown, along with the coupled
helical spin rotation. (c) The Mn2 charge modulation, which accompanies the structural modulation along the c axis. The incommensurate orbital modulation
for half a period of the structural modulation is depicted at the side of the figure, with positions 1, 2 and 3 corresponding to the labelled points in (a).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2294

4 NATURE COMMUNICATIONS | 3:1277 | DOI: 10.1038/ncomms2294 | www.nature.com/naturecommunications

& 2012 Macmillan Publishers Limited. All rights reserved.

CaMn7O12

Lattice distortions 

Orbital structure



Orbitals - Magnetism
(Kugel-Khomskii-like models)

1. Interplay of different 
degrees of freedom: 



Mott-Hubbard transition in a nutshell

Metal
t

Hkin = − t ∑
⟨ij⟩σ

c†
iσcjσ ∑

kσ

ε(k)c†
kσckσ

Fourier

ε

k

ε

DOS

W
=

2z
t

H = − t ∑
⟨ij⟩σ

c†
iσcjσ + U∑

i

ni↑ni↓Hubbard model:

U

U ≫ W

 - on-site Coulomb repulsionU

ε

Insulator

U ≪ W

Fermi

0 21

T
W

U/W

Insulator

Uc

Paramagnetic
liquid

Ordered phase

Metal-Insulator 
(Mott-Hubbard) 

transition!



Introduction: Orbitals and spins 

1 electron
per orbital

1 electron
per orbital

Ferro-orbital order
AFM FM

!"#$%&'( )*+%# &,,%&- !" $)% . /,01&"'( 2!$) 3- 1%!"4
,-&5$!5&++6 7! 89:;<

=)% 5-6#$&+0>!%+' #,+!$$!"4 ?!3@AB *>$%" )&# & '-&C&$!5
!">+D%"5% *" $)% C&4"%$!5 ,-*,%-$!%# *> =E 5*C,*D"'#< F%
G"*2 >-*C &$*C!5 ,)6#!5# $)&$ HD"'I# -D+%# '%$%-C!"% $)%
!*" #$&$% 2!$) ,&-$!&++6 >!++%' +%J%+#< K# & C&$$%- *> >&5$( $)%6
#&6 $)&$ $)% #$&$% *> & C&"60%+%5$-*" #6#$%C #)*D+' 1% #D5)
$)&$( >!-#$( $)% $*$&+ #,!" !$*$ "

!
" #"( &"' $)%" $)% $*$&+ *-1!$&+

C*C%"$ $$*$ "
!

" %" *> &" !*" #)*D+' $&G% $)% C&L!CDC
,*##!1+% J&+D%#< =)!#( !" ,&-$!5D+&-( C%&"# $)&$( %<4<( & 3*7!

!*"2!$) *D$%- %+%5$-*" 5*">!4D-&$!*" 7': #)*D+' )&J%!$*$"/<
H*2%J%-( $)!# !# "*$ &+2&6# $)% 5&#%< F)%" & =E !*" !#
!C,+&"$%' !"$* &" *5$&)%'-&+ #D--*D"'!"4( $)% +!4&"' 5-6#$&+
>!%+' #,+!$# !$# '0#)%++( C&G!"4 $)% >!++!"4 *> )!4)%- +6!"4 '0+%J%+#
?$)% %4 +%J%+# !" $)% *5$&)%'-&B %"%-4%$!5&++6 D">&J*-&1+%(
2)!5) C&6 -%#D+$ !" J!*+&$!*" *> >!-#$ HD"'I# -D+%< K 5+&##!5&+
%L&C,+% *> #D5) & #!$D&$!*" !# M&3*.7( 2)%-% $)% #,!" #$&$% *>
3*7! !# $)% +*20#,!" !$*$ " N ?%+%5$-*" *55D,&$!*" $:/4B( &"'
$)% $-&"#!$!*" ?G"*2" !" 5)%C!#$-6 &# #,!" 5-*##*J%-B >-*C $)%
+*20#,!" ?!$*$ " N( $:/4%4

NB $* $)% !"$%-C%'!&$%0#,!" ?!$*$ " 9(
$O/4%4

9B *- $* & C!L$D-% *> +*20#,!" &"' )!4)0#,!" ?$P/4%
/
4B #$&$%#

*55D-# 89QR/N;<
S$ !# *>$%" #D>>!5!%"$ $* '%#5-!1% HD"'I# -D+% !" $)% C%&"0

>!%+' &,,-*L!C&$!*" 16 $)% >*++*2!"4 H&C!+$*"!&"T

&HD"' " #'H
"

($"( %

#
9

/
! /!)

(!
)
( %

$
! &U'

2)%-% (( ( % "DC%-&$% *-1!$&+#( &"' 'H !# $)% !"$-&&$*C!5
HD"'I# %L5)&"4% ,&-&C%$%-< S$ !# %&#!+6 #%%" $)&$ !> *"% D#%#
$)!# H&C!+$*"!&"( $)%"( !" *-'%- $* >!"' $)% HD"'I# %L5)&"4%
%"%-46 >*- %&5) &$*C!5 5*">!4D-&$!*"( *"% "%%'# #!C,+6 $*
5*D"$ $)% "DC1%- *> !"%VD!J&+%"$ ,&!-# *> %+%5$-*"# 2!$)
,&-&++%+ #,!"# ?%<4<( >*- 3*7! $)% +*20#,!" #$&$% 2!++ )&J%
*HD"' " #:'H( !"$%-C%'!&$%0#,!" *HD"' " #Q'H( &"' )!4)0
#,!" #$&$% *HD"' " #9N'HB<

A,!"0#$&$% $-&"#!$!*"# 5&" 1% >*D"' !" C&"6 *$)%- =E
5*C,*D"'# 1&#%'( !" &''!$!*" $* 3*7!( *" @%/!( &"' C*-%
-&-%+6 *" @%7!( E"/!( &"' E"7! !*"#< S$ !# -&$)%- !C,*-$&"$
$* C%"$!*" $2* ,*!"$# !" $)!# -%4&-'< @!-#$ *> &++( #,!"0#$&$%
$-&"#!$!*"# &-% C*-% $6,!5&+ >*- 7'( "*$ >*- P' &"' O'( =E
5*C,*D"'#< S" 7' #6#$%C#( $)% $/4 # %4 #,+!$$!"4 !# !3@A (
9"O#/ %W &"' !$ 5&" %&#!+6 5*C,%$% 2!$) $)% !"$-&0&$*C!5
%L5)&"4% !"$%-&5$!*"( 2)!5) !# 4!J%" 16 'H ( 9 %W &"' 2)!5)
&--&"4%# %+%5$-*"# &55*-'!"4 $* HD"'I# -D+%< S" 5*"$-&#$( 'D%
$* & +&-4%- ,-!"5!,&+ VD&"$DC "DC1%-( $)% P' &"' O' *-1!$&+#
&-% C*-% #,&$!&++6 %L$%"'%' $)&" $)% 7' *"%# 87;< K# & -%#D+$(
1*$) G!"%$!5 &"' 3*D+*C1 5*"$-!1D$!*"# $* $)% 5-6#$&+0>!%+'
#,+!$$!"4 &-% +&-4%-( &"' $)% $/4 # %4 #,+!$$!"4 %L5%%'# 7RP %W !"
#6#$%C# 1&#%' *" $)%#% !*"# 8/9;<

K# & -%#D+$( P' &"' O' %+%C%"$# $6,!5&++6 &'*,$ +*20#,!"
#$&$%#( ,D$$!"4 &# C&"6 %+%5$-*"# &# ,*##!1+% !"$* $)% +*2%-0
+6!"4 $/4 +%J%+#< F)!+% *"% 5&""*$ 5*C,+%$%+6 -D+% *D$ $)%
,*##!1!+!$6 $)&$ %J%" !" $)!# 5&#% #,!"0#$&$% $-&"#!$!*"# C&6
*55D- 2!$)!" $/4 +%J%+# #,+!$ 16 & "*"5D1!5 5-6#$&+ >!%+'( $)!# !#
4%"%-&++6 -&$)%- D"+!G%+6( #!"5% 5*--%#,*"'!"4 #,+!$$!"4 !#
$6,!5&++6 CD5) #C&++%- $)&" 'H< S"'%%'( &$$%C,$# $* '%#5-!1%
$)% ,-*,%-$!%# *> #*C% C&$%-!&+# 16 $)% #,!"0#$&$% $-&"#!$!*"
5&D#%' 16 5-6#$&+0>!%+' #,+!$$!"4 *> $)% $/4 #D1#)%++ ?#%%( %<4<(
X%>< 8//;B )&J% >&!+%' 8/7R/O;< ."% C!4)$ %L,%5$( $)*D4)( $)&$
$)!# !'%& C&6 &,,+6 $* #*C% %&-+6 O' =E 5*C,*D"'#( 2)%-%
'H !# %L,%5$%' $* 1% -&$)%- #C&++ ?N<7RN<O %WB &"' !3@A 2!$)!"
$)% $/4 #D1#)%++ 5&" &+#* 1% ( N"O %W 'D% $* $)% "*"5D1!5
5-6#$&+ >!%+'<

!"# $%&'()* +,-%,,. /0 0%,,+/1 )2+ 1)-2,('.1
F)!+% 5-6#$&+0>!%+' #,+!$$!"4 !" $)% $/4 *- %4 #D1#)%++# ?"*$ $)%
C&!" #,+!$$!"4 1%$2%%" $/4 &"' %4YB !# D"+!G%+6 $* +%&' $* & #,!"0
#$&$% $-&"#!$!*"( !$ ?&"' C*-% #* $)% ZC&!"I $/4 # %4 5-6#$&+0
>!%+' #,+!$$!"4B C&6 4-%&$+6 &>>%5$ $)% C&4"%$!5 ,-*,%-$!%# *>
C&$%-!&+# J!& & 5*C,+%$%+6 '!>>%-%"$ C%5)&"!#C< S" #$-*"4+6
5*--%+&$%' #6#$%C#( %J%" #C&++ 5-6#$&+0>!%+' #,+!$$!"4 C&6
-%#D+$ !" %+%5$-*" +*5&+![&$!*" *" & ,&-$!5D+&- *-1!$&+< E*-%0
*J%-( !$ $D-"# *D$ $)&$ $)% C&4"%$!5 ,-*,%-$!%# *> & #6#$%C
#$-*"4+6 '%,%"' *" $)% ,&-$!5D+&- *-1!$&+# *" 2)!5) %+%5$-*"#
&-% +*5&+![%'< =)%-% &-% $)% #*05&++%' \**'%"*D4)R]&"&0
C*-!RK"'%-#*" ?\]KB -D+%# 87;( 2)!5) '%#5-!1% $)% -%+&$!*"0
#)!, 1%$2%%" $)% *-1!$&+ *55D,&$!*" &"' $)% -%#D+$!"4
C&4"%$!5 5*D,+!"4 !" #6#$%C# 2!$) +*5&+![%' %+%5$-*"#< S"
'%#5-!1!"4 $)%#% -D+%#( 2% 2!++ %C,+*6 $)% $%-C!"*+*46 *>
>!++%' ?$2* %+%5$-*"#B( )&+>0>!++%' ?& #!"4+% %+%5$-*"B( &"' %C,$6
*-1!$&+#( &"' 2!++ %L,+&!" )*2 $)%#% -D+%# 5&" 1% &,,+!%' $*
C*#$ 5*CC*" 4%*C%$-!%#<

S$ !# %&#!%- $* #$&-$ 2!$) & '!-%5$ *J%-+&, 1%$2%%" '0*-1!$&+#
?+",-./ -0.1234-B( &"' $)%" 5*"#!'%- & #!$D&$!*" C*-% $6,!5&+
>*- =E 5*C,*D"'#( 2)%" =E !*"# &-% #%,&-&$%' 16 +!4&"'#(
#* $)&$ $)% 5*--%#,*"'!"4 '0*-1!$&+# ,-&5$!5&++6 '* "*$
*J%-+&, '!-%5$+6 2!$) %&5) *$)%- &"' &++ )*,,!"4 ,-*5%##%#
*55D- J!& +!4&"' ,0*-1!$&+# ?$)% #* 5&++%' #56-,-0.1234-B<

7",-./ -0.1234-8 92#- 9T /1- -0.1234- .:56%"34 ;-/<--3
/<: :=-,%266"34 12%>?>"%%-+ :,;"/2%# "# #/,:34 23+ 23/">-,,:(24?
3-/".8

=)!# #!$D&$!*" !# !++D#$-&$%' !" @!4< 7&< S" $)% +!C!$ *> +&-4%
HD11&-' -%,D+#!*"( @! /( %+%5$-*"# &-% C*#$+6 +*5&+![%' *"
=E #!$%#< S> $2* %+%5$-*"# )&J% '!>>%-%"$ #,!" ,-*^%5$!*"#( !<%<(
&-% K@E 5*D,+%'( $)%6 5&" #*C%$!C%# )*, >-*C #!$% $* #!$%
&"' 4&!" #*C% G!"%$!5 %"%-46< ."% C&6 %&#!+6 %J&+D&$% &
5*--%5$!*" $* $)% 4-*D"'0#$&$% %"%-46 'D% $* $)!# )*,,!"4(
D#!"4 #%5*"'0*-'%- ,%-$D-1&$!*" $)%*-6 2!$) -%#,%5$ $* /#@T
!*K@E " #// /#@< @&5$*- / &,,%&-# )%-% #!"5% 1*$) %+%5$-*"#
5&" )*,< @ !# $)% %"%-46 *> &" !"$%-C%'!&$% ,%-$D-1%' #$&$%
?2)%" 1*$) %+%5$-*"# &-% *" $)% #&C% #!$%B 2!$) -%#,%5$ $*
$)% 4-*D"'0#$&$% %"%-46 *N< S" $)% *,,*#!$% #!$D&$!*" *>
@E05*D,+%' #,!"#( %+%5$-*"# 5&""*$ )*, 'D% $* $)% _&D+!
,-!"5!,+% &"' '* "*$ '!#,+&6 $)!# %"%-46 4&!"< =)D#( $)%
%L5)&"4% !"$%4-&+ 1%5*C%# K@E ?,*#!$!J%BT

'9 " *@E # *K@E " *N #
#
*N #

// /

@

$
" // /

@
&`'

!"#$%&'( )*+, -#'$./& !01223
7",-./ -0.1234-8 92#- /T /1- -0.1234- .:56%"34 ;-/<--3

:=-,%266"34 12%>?>"%%-+ 23+ -(6/A :,;"/2%# "# <-2B 23+ /5,3# :5/
CD8

@!-#$ *> &++( #!"5% *"+6 *"% )&+>0>!++%' *-1!$&+ 5&" 1%
'!-%5$%' &+*"4 $)% +!"% 5*""%5$!"4 $2* #!$%# ?*$)%-2!#% $)%-%

4&/-56//(78
,&/-56//(7 4&/-56//(78($%+9

& :

;<=

<=

;<=

<=

3'-4%, !" AG%$5) !++D#$-&$!"4 )*,,!"4 ,-*5%##%# !" $)% 5&#% *> & '!-%5$
*J%-+&, 1%$2%%" ?&B $2* )&+>0>!++%' &"' ?1B )&+>0>!++%' &"' %C,$6 '0*-1!$&+#<

>#?($:(' @A0B C':*+&/ %,9D*"D *E +'&ED*+*#E $(+&/ "#$%#.E7DF E() +'(E7D 00@1

AFM FM

JF = EFM − EAFM = 2E0 −
2t2

U − JH
− 2E0 +

2t2

U
∼ −

t2JH

U2

1 electron
per orbital

1 electron
per orbital

no electrons!

AntiFerro-orbital order

strong

weak

AFM

FM

Ĥ = J∑
i≠j

̂ ⃗Si
̂ ⃗SjHeisenberg model:

JA = EFM − EAFM = 2E0 − (2E0 −
2t2

U
) =

2t2

U



Modification of magnetic structure by orbitals

If we know local 
distortions

x2 − z2y2 − z2

We can understand 
which orbitals are occupied

x2 − z2y2 − z2

We can find a 
magnetic order!

Stong 
AFM

weak FM



John  
Goodenough 

1922

Nobel prize 


2019

Junjiro  
Kanamori 
1930-2012

Philip  
Anderson 
1923-2020

Nobel prize 


1977

Antiferro-orbital      => FM

Ferro-orbital          => AFM

900 via orthogonal  
p-orbitals

=> FM

Goodenough - Kanamori - Anderson rules 
connect orbitals and spins



Goodenough - Kanamori - Anderson rules 
connect orbitals and spins

JAFM ∼ t2 /U

|JFM | ∼ t2JH /U2

JAFM

|JFM |
∼

U
JH

U ~ 10 eV, JH ~ 1 eV

JAFM ∼ 10 |JFM |

AFMFM

This is the reason why most of insulating  
transition metal oxides with localized electrons are AFM

Important general trend in  
insulating transition metal oxides



Orbitals and spins: Kugel-Khomskii model  
and electronic mechanism of orbital ordering

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

site i site j

δE = −
2t2

U

δE = −
2t2

U

δE = −
2t2

U − JH

δE = 0

Electronic mechanism of orbital order

The maximum energy gain is when 
electrons occupy different orbitals

Electrons can decide by themselves 
(without lattice), which orbitals to occupy

Two levels with hoppings between the same orbitals

JS =
2t2

U (1 −
JH

U ),ĤKK = ∑
i≠j

JS
ijŜi ⋅ Ŝj + Jτ

ij ̂τj ̂τj + 4JSτ
ij (Ŝi ⋅ Ŝj)( ̂τi ̂τj), Jτ = JSτ =

2t2

U (1 +
JH

U )
Kugel-Khomskii Hamiltonian:

̂τz |1⟩ = 1/2 |1⟩
̂τz |2⟩ = − 1/2 |2⟩

Pseudo-spin operators: Ĥ = ∑
i≠j

tab
ij c†

iaσcjbσ +
1
2 ∑

i

Uabniaσnibσ′ (1 − δabδσσ′ )

− ∑
i,a≠b

Jab
H (c†

iaσciaσ′ c†
ibσ′ cibσ + c†

iaσcibσc†
iaσ′ cibσ′ )

Hubbard model:



Introduction: Orbitals and spins 
electronic (or KK) mechanism of orbital ordering

Sov. Phys.- Usp. 25, 231 (1982) 
Heisenberg model  

(spins only)

Ĥ = J∑
i≠j

̂ ⃗Si
̂ ⃗Sj

Kugel-Khomskii-like models (spins+orbitals)

� � � � � �  � � �—� � � � � � �  �  � �� � � � � � � 6 3 7

—J�§�)± 2/3(1 +Ig�)x^

^�«�*]}. (18)

� ��. 13. � ���������� ������������ � �������
����� ���� KCuF3, �� ������� ����������� � �

����������  1 8 .
�) � �) — ��� ������������� ���� ������������; ������

�� ��� ����������  � KCuF3 ' · .

����� (�, j)x,y,z �������� ��� ��������� �� ��� ��� � ��  �������, ����
�������� � �  ����� ������������ � �� ���, t = 10 Dq/6 (10 Dq — ����������
����� eg� � ^������� � � � ����������  ����). �  (18) ��� ��������  �������
����, ��� ����������� ������
������� �� ������� �� �����
�� ��������� (Un = �/22 =
= £/1 2= U).

�  ���� ���� ���� ������
���� (18), �������� ���������
������ ������������� �����
���� ��� �� �����, ��� ���
������� �� ���. 12. ���, ���
������� ���������� �� � ����
�����, ���� � �� ���� ������
��� ��� ����� �� ���������
�����������  ���������, ���
�������� ����������� ������
����, ������������ �� ���.
13. ����� ��������� ������
����� ��� �� � ���� ����
����������, � ������� ����  � �3+ ������� � �������  ����������  �� � ����
(��������, KCuF3). ��������� �������� �  �������� ���������, ������ � ��
�� ������������ �� �� ����� ���������� (001), ������  � �������� ����
������� ����������� ������ ������������ � � . � �� ������������ �����
����� ���������� ����������� ��������� dx�i�z4 � ���.�� (������� � �� ����
� ������ ��������������������� � ������������  ����� ±� /3 � ���������
(�*, X�) ��� (Q3, Q2), ��. ���. 5). � �� ����  ������ � �  ��� ����������� ��
(������� � �� ����� �������) ���� ������������, ���������� �� �� ���. 13.
������� ��� ���� � ������ ������������� ������� ��� ���������  KCuF3

���� ���� ����� 16, � � �������� ���������� ����� ������ � ��� �������  ����
�����  3 1. �������, ��� ��������� ���������� ��������� �������� � �����
���� ���� ��������������� ������������� �  �� ��� � (������ ��������
��� ��� ���������� ��������� �� ��������) � ������������ ������� ����
������������ ������������� �  � ��������� (�, �). � ����� ������� ��������
KCuF3, �� ��������� ������� � �����������, ����� ���� ��� ����������
���� �� �������� 1 6. ������� ��������, ��� ��� ����������� � ������ � �3 +

� � �2+ (� ���� ����� ������� ���� �������� �� eg�������, � ��� �� t 2 g )
����������� ��������� ��������� ���������� �� ������������ �� ���. 13
(���������� ����  �, ������� � π/2). �  3 2 ��������, ��� � �������� �  �����
���������  ����� �������� � ���� �� ������ ���� �������������� �����
����������� �� eg� � t2g�yp0BHHx.

���������, ������������ �� ���. 13, �������� ��� ����� ������
��������� ��������������; � ������  ������ ��� ��� ���� ��������� ����
������ � �����������, � ��������� ������������. ���� �� �� ��������� ��
����������� � �  �����  �����������  ��������� (������������� , ��������,
���� � �� ����������������), ��, ��������� � �������� � � ������������
���� (18) ������������ � �� ������� �������� (�), �������  �� ���������
�������� ������������. ����� ������, ��������, ��� ������� �� ����

Kugel-Khomskii model 
(perovskite with eg-electrons)

There is a coupling between orbitals and spins  
in materials with orbital (quasi) degeneracy (don’t mix with spin-orbit interaction)

ĤKK =
t2

Ũ ∑
i≠j

( 1
2

+ 2 ̂ ⃗τi
̂ ⃗τj) [ 1

2
+ 2 ̂ ⃗Si

̂ ⃗Sj]



Kugel-Khomskii model: 
realization of a highly symmetric model 

Excited level spectrum  and a hopping 
structure  are the origin of all complications! 

⟨H1⟩
tλλ′ 
ij

Ĥeff = ∑
i≠j,k≠l

∑
{λ}

∑
σσ′ 

tλλ′ tλ′ ′ λ′ ′ ′ 

E0 − ⟨H1⟩
c†

iλσcjλ′ σc†
kλ′ ′ σ′ clλ′ ′ ′ σ′ 

General expression for  
the Kugel-Khomskii Hamiltonian:

P. Igoshev, S.S., K.Kugel  JMMM 587, 171315 (2023)

SU(4) symmetric model: 

K. Kugel, D. Khomskii, A. Sboychakov, S.S., PRB 91, 155125 (2015)

Common-face geometry:

Honeycombs with strong spin-orbit coupling and :       t1
2g

M. Yamada et al., PRL 121, 97201 (2018)

Note also possibility of dimerization  
A. Ushakov, I. Solovyev, S.S.,  
JETP Letters 112, 642 (2020)

Exchange interaction 

Orbital structure

Heisenberg model

Kugel-Khomskii model



Some examples

1. Interplay of different 
degrees of freedom: 



Example 2: Reduction of dimensionality 
Modulation of the exchange interaction

JA =
2t2

U

Antiferro-orbital => FM

Ferro-orbital => AFM

JF ≈ −
2t2JH

U2

JF ≈ −
2t2JH

U2

strong

weak

weak

900 via orthogonal  
p-orbitals => FM



Crystal structure:  
perovskite (3D)

KCuF3

t2g

eg x2-y2

xy

xz/yz

Cu

Jahn-Teller distortions:

strong
AFM

week 
FMweek 

FM
AFM
S=1/2

chains!
Kugel & Khomskii,  
JETP 37, 725 (1973)

Orbitals reduce dimensionality: 3D 1D

KCuF3 - One of the best 1D antiferromagnet !!!

Cu2+ (3d9)

Example 2: Reduction of dimensionality 
Modulation of the exchange interaction



Example 4: Formation of a Haldane chain 
due to orbital ordering

Crystal structure:  
pyrochlore (3D)

Tl2Ru2O7
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Experiment

Orbitals reduce dimensionality:  3D 1D

Ru4+ (4d4, S=1)

Orbital  
ordering: 
(LDA+U)

27
0 K

15 K

S. Lee, S.S. et al., Nature Material 5, 471 (2006)

AFM chain S=1: Haldane chainsAFM AFM

Ru4+



Electronic structure: 
Orbital-selective Mott transition

Sp
in

-o
rb

it 
co

up
lin

g 
m

ay
 su

pp
re

ss
 th

e 
Ja

hn
-T

el
le

r 
ef

fe
ct

!

S.
S.

, D
. K

ho
m

sk
ii 

Ph
ys

.-U
sp

. 6
0,

 1
12

1 
(2

01
7)

E.
 P

lo
tn

ik
ov

a 
et

 a
l.,

 P
RL

 1
16

, 1
06

40
1 

(2
01

6)

t 2
g

N
o 

ne
ed

 fo
r 

Ja
hn

-T
el

le
r 

di
st

or
tio

ns
!

(n
o 

de
ge

ne
ra

cy
 a

ny
m

or
e)

Q 3
Q 2

E
Q 3

Q 2

E

−Δ2Δ
N

o 
Sp

in
-O

rb
it 

co
up

lin
g

In
fin

ite
 S

pi
n-

O
rb

it 
co

up
lin

g

t 2
g

fo
r
th
e
sy
m
m
et
ry

o
f
th
e
in
te
rs
it
e
in
te
ra
ct
io
n
s.
N
am

el
y,
th
e

v
er
y
fo
rm

o
f
th
e
ex
ch
an
g
e
H
am

il
to
n
ia
n
d
ep
en
d
s
o
n
b
o
n
d

g
eo
m
et
ry

th
ro
u
g
h
a
d
en
si
ty
p
ro
fi
le
o
f
K
ra
m
er
s
st
at
es
,a
s
w
e

d
em

o
n
st
ra
te

b
el
ow

.
E
xc
h
a
n
g
e
co
u
p
li
n
g
s
o
f
n
ei
g
h
b
o
ri
n
g
K
ra
m
er
s
st
a
te
s.
—

W
e
co
n
si
d
er
th
e
li
m
it
o
f
th
e
st
ro
n
g
sp
in
-o
rb
it
co
u
p
li
n
g
,i
.e
.,

w
h
en

!
is

la
rg
er

th
an

ex
ch
an
g
e
in
te
ra
ct
io
n
b
et
w
ee
n
th
e

is
o
sp
in
s.
T
h
e
ex
ch
an
g
e
H
am

il
to
n
ia
n
s
fo
r
is
o
sp
in
s
ar
e
th
en

o
b
ta
in
ed

b
y
p
ro
je
ct
in
g
th
e
co
rr
es
p
o
n
d
in
g
su
p
er
ex
ch
an
g
e

sp
in
-o
rb
it
al
m
o
d
el
s
o
n
to
th
e
is
o
sp
in
st
at
es

E
q
.(
1)
.F

ir
st
,w

e
p
re
se
n
t
th
e
re
su
lt
s
fo
r
th
e
ca
se

o
f
cu
b
ic
sy
m
m
et
ry

(!
¼

0,
si
n"

¼
1=

ffiffiffi 3p
),
an
d
d
is
cu
ss

la
te
r
th
e
ef
fe
ct
s
o
f
a
te
tr
ag
o
n
al

d
is
to
rt
io
n
.
W
e
co
n
si
d
er

tw
o
co
m
m
o
n
ca
se
s
o
f
T
M
-O

-T
M

b
o
n
d

g
eo
m
et
ri
es
:
(A

)
a
1
8
0"
-b
o
n
d

fo
rm

ed
b
y

co
rn
er
-

sh
ar
ed

o
ct
ah
ed
ra

as
in

F
ig
.
2
(a
),

an
d

(B
)
a
9
0"
-b
o
n
d

fo
rm

ed
b
y
ed
g
e-
sh
ar
ed

o
n
es
,
F
ig
.
2
(b
).

(A
)
A

1
8
0"

b
o
n
d
:
F
or

th
is

g
eo
m
et
ry
,
th
e

n
ea
re
st
-

n
ei
g
h
b
o
r
t 2
g
h
o
p
p
in
g
m
at
ri
x
is
d
ia
g
o
n
al
in
th
e
o
rb
it
al
sp
ac
e

an
d
,o
n
a
g
iv
en

b
o
n
d
,o
n
ly
tw
o
o
rb
it
al
s
ar
e
ac
ti
ve
,e
.g
.,
jx
yi

an
d
jx
zi

o
rb
it
al
s
al
o
n
g
a
b
o
n
d
in

x-
d
ir
ec
ti
o
n
[F
ig
.
2
(a
)]
.

T
h
e
sp
in
-o
rb
it
al

ex
ch
an
g
e
H
am

il
to
n
ia
n
fo
r
su
ch

a
sy
st
em

h
as

al
re
ad
y
b
ee
n
re
p
o
rt
ed
:s
ee

E
q
.(
3.
1
1
)
in
R
ef
.[
1
2]
.A

ft
er

p
ro
je
ct
in
g
it

o
n
to

th
e
g
ro
u
n
d
st
at
e
d
o
u
b
le
t,
w
e
fi
n
d
an

ex
ch
an
g
e

H
am

il
to
n
ia
n

fo
r

is
o
sp
in
s

in
a

fo
rm

o
f

H
ei
se
n
b
er
g
p
lu
s
a
p
se
u
d
o
d
ip
o
la
r
in
te
ra
ct
io
n
,

H
ij
¼

J 1
~ S
i
#~ S

j
þ

J 2
ð~ S

i
#~ r

ij
Þð
~ r i
j
#~ S

jÞ;
(2
)

w
h
er
e
~ S
i
is
th
e
S
¼

1=
2
o
p
er
at
o
r
fo
r
is
o
sp
in
s
(r
ef
er
re
d
to
as

si
m
p
ly

sp
in
s
fr
o
m

n
ow

o
n
),
~ r i
j
is
th
e
u
n
it
ve
ct
o
r
al
o
n
g
th
e

ij
b
o
n
d
,
an
d
J 1

ð2
Þ
¼

4 9
#
1ð
2Þ
.
H
er
ea
ft
er
,
w
e
u
se

th
e
en
er
g
y

sc
al
e
4t

2
=U

w
h
er
e
t
is

a
d
d
-t
ra
n
sf
er

in
te
g
ra
l
th
ro
u
g
h
an

in
te
rm

ed
ia
te

o
x
y
g
en
,
an
d
U

st
an
d
s
fo
r
th
e
C
o
u
lo
m
b
re
-

p
u
ls
io
n
o
n
th
e
sa
m
e
o
rb
it
al
s.
T
h
e
p
ar
am

et
er
s
#
1ð
2Þ
co
n
tr
o
l-

li
n
g

is
o
tr
o
p
ic

(a
n
is
o
tr
o
p
ic
)

co
u
p
li
n
g
s

ar
e

g
iv
en

b
y

#
1
¼

ð3
r 1

þ
r 2

þ
2r

3
Þ=
6

an
d

#
2
¼

ðr
1
'

r 2
Þ=
4,

w
h
er
e

th
e
se
t
o
f
r n

ch
ar
ac
te
ri
zi
n
g
th
e
m
u
lt
ip
le
t
st
ru
ct
u
re

o
f
th
e

ex
ci
te
d
st
at
es

d
ep
en
d
s
so
le
ly

o
n
th
e
ra
ti
o
$
¼

J H
=U

o
f

H
u
n
d
’s

co
u
p
li
n
g
an
d
U

[2
4]
.
A
t
sm

al
l
$
,
o
n
e
h
as

#
1
’
1

an
d
#
2
’
$
=2
.
T
h
u
s,

w
e
fi
n
d
a
p
re
d
o
m
in
an
tl
y
is
o
tr
o
p
ic

H
am

il
to
n
ia
n
,
w
it
h

a
w
ea
k

d
ip
o
la
rl
ik
e
an
is
o
tr
o
p
y

te
rm

.
W
h
il
e
th
e
ov
er
al
l
fo
rm

o
f
E
q
.
(2
)
co
u
ld

b
e
an
ti
ci
p
at
ed

fr
o
m

sy
m
m
et
ry

ar
g
u
m
en
ts
,
th
e
ex
pl
ic
it
d
er
iv
at
io
n
le
d
u
s

to
an

u
n
ex
p
ec
te
d
re
su
lt
:
In

th
e
li
m
it
o
f
st
ro
n
g
S
O
co
u
p
li
n
g
,

th
e
m
ag
n
et
ic
d
eg
re
es

ar
e
g
ov
er
n
ed

b
y
a
n
ea
rl
y
H
ei
se
n
b
er
g

m
o
d
el

ju
st

li
k
e
in

th
e
ca
se

o
f
sm

al
l
!
,
an
d
,
su
rp
ri
si
n
g
ly

en
o
u
g
h
,
it
s
an
is
o
tr
o
p
y
is

en
ti
re
ly

d
u
e
to

th
e
H
u
n
d
’s

co
u
-

p
li
n
g
.
T
h
is

is
o
p
p
o
si
te

to
a
co
nv
en
ti
o
n
al

si
tu
at
io
n
:
ty
p
i-

ca
ll
y,
th
e
an
is
o
tr
o
p
y
co
rr
ec
ti
o
n
s
ar
e
o
b
ta
in
ed

in
p
ow

er
s
o
f

!
w
h
il
e
th
e
H
u
n
d
’s
co
u
p
li
n
g
is
n
o
t
es
se
n
ti
al
.

(B
)
A
9
0"

b
o
n
d
:T

h
er
e
ar
e
ag
ai
n
o
n
ly
tw
o
o
rb
it
al
s
ac
ti
ve

o
n
a
g
iv
en

b
o
n
d
,e
.g
.,
jx
zi

an
d
jy
zi

o
rb
it
al
s
al
o
n
g
a
b
o
n
d
in

th
e
xy
-p
la
n
e.

H
ow

ev
er
,
th
e
h
o
p
p
in
g
m
at
ri
x
h
as

n
ow

o
n
ly

n
o
n
d
ia
g
o
n
al
el
em

en
ts
,a
n
d
th
er
e
ar
e
tw
o
p
o
ss
ib
le
p
at
h
s
fo
r

a
ch
ar
g
e
tr
an
sf
er
[v
ia
u
p
p
er
o
r
lo
w
er
o
x
y
g
en
,s
ee

F
ig
.2
(b
)]
.

T
h
is

p
ec
u
li
ar
it
y

o
f
a

9
0"

b
o
n
d

le
ad
s
to

an
ex
ch
an
g
e

H
am

il
to
n
ia
n
d
ra
st
ic
al
ly

d
if
fe
re
n
t
fr
o
m

th
at

o
f
a
1
8
0"

g
e-

o
m
et
ry
.
T
w
o
tr
an
sf
er

am
p
li
tu
d
es

v
ia
u
p
p
er

an
d
lo
w
er

o
x
y
-

g
en

in
te
rf
er
e
in

a
d
es
tr
u
ct
iv
e
m
an
n
er

an
d
th
e
is
o
tr
o
p
ic
p
ar
t

o
f
th
e
H
am

il
to
n
ia
n
ex
a
ct
ly
va
n
is
h
es
.T

h
e
fi
n
it
e,
a
n
is
o
tr
o
p
ic

in
te
ra
ct
io
n
ap
p
ea
rs
,h
ow

ev
er
,d
u
e
to
th
e
J H

-m
u
lt
ip
le
ts
tr
u
c-

tu
re

o
f
th
e
ex
ci
te
d
le
ve
ls
.
M
o
st
im

p
o
rt
an
tl
y,
th
e
ve
ry

fo
rm

o
f
th
e
ex
ch
an
g
e
in
te
ra
ct
io
n
d
ep
en
d
s
o
n
th
e
sp
at
ia
l
o
ri
en
ta
-

ti
o
n
o
f
a
g
iv
en

b
o
n
d
.
W
e
la
b
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b
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h
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h
n
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h
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b
ee
n
th
e
su
b
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ct

o
f
n
u
m
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o
u
s

st
u
d
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as

a
p
ro
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e
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d
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w
it
h
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ro
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n
d
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e.
g
.,

R
ef
.
[2
5
])
.
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r
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d
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at
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b
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p
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d
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d
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iv
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p
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s
m
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b
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].
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p
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p
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 d
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p
ro
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p
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a
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n
o
f
a

sp
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u
p
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d
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in
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an
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þ
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.
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d
in
g
o
rb
it
al
s
ac
ti
v
e
al
o
n
g
th
es
e
b
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m
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e
tr
an
si
ti
o
n
m
et
al

(o
x
y
g
en
)
io
n
s.
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b
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b
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b
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b
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0
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g
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de
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g
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ra
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b
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u
g
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p
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b
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b
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n
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ra
ct
io
n
b
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b
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p
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e
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r
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o
f
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b
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m
m
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r
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d
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e
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b
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b
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b
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p
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at
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d
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ro
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d
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ra
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w
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p
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p
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p
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Table 1. Crystallographic data, which is used for LDA calculations: symmetry group, parameters of lattice, atomic positions
and distance between nearest atoms. Symbol “/”denotes that for this structure corresponding parameter do not exist.

Compound Sr2RuO4 Ca1.5Sr0.5RuO4 Ca1.8Sr0.2RuO4 Ca2RuO4

Symmetry group I4/mmm I41/acd P21/c Pbca

a [Å] 3.8603 5.3195(1) 5.3338(4) 5.6323(3)

b [Å] 3.8603 5.3195(1) 5.3162(4) 11.7463(5)

c [Å] 12.729 25.1734(5) 12.4143(8) 5.3877(2)

Vol. [Å3] 189.69 712.33(2) 352.01(4) 356.45

β [o] / / 90.06(1) /

Ca(Sr) x 0.0 0.0 0.0141(21)/0.4903(24) 0.0593(4)

Ca(Sr) y 0.0 0.25 0.0137(23)/0.5273(23) 0.3525(2)

Ca(Sr) z 0.14684 0.5492(1) 0.3483(2) 0.0021(5)

O1 x 0.0 0.1933(2) 0.1939(6) 0.3005(4)

O1 y 0.0 0.4433(2) 0.3079(6) 0.0272(2)

O1 z 0.3381 0.125 0.0/0.0196(5) 0.1952(4)

O2 x 0.5 0 −0.0344(5) −0.0212(4)

O2 y 0.0 0.25 −0.0064(7) 0.1645(2)

O2 z 0.0 0.4568(1) 0.1649(2) −0.0692(3)

Ru − O1 [Å] 1.930 1.929(1) 1.936(3)/1.926(3) 2.015(2)

1.941(3)/1.952(3) 2.018(2)

Ru − O2 [Å] 2.061 2.059(3) 2.056(3)/2.056(3) 1.972(2)

Ca − O1 [Å] 2.692 2.399(2) 2.316(7)/2.286(10) 2.292(3)

2.994(2) 2.445(8)/2.502(9) 2.433(3)

2.838(11)/2.934(10) 2.565(3)

3.141(10)/3.037(10) 3.313(3)

Ca − O2 [Å] 2.439 2.326(4) 2.294(4)/2.296(4) 2.287(3)

2.737 2.664(1) 2.416(12)/2.488(13) 2.362(3)

2.559(13)/2.444(13) 2.399(3)

2.772(13)/2.845(13) 3.118(3)

2.932(12)/2.912(13) 3.296(3)

the t2g-subshell, which we shall show is the key to under-
standing the electronic properties. The paper concludes
with a discussion and summary of our results. A brief ac-
count of this work has appeared elsewhere [16].

2 End members: Sr2RuO4 and Ca2RuO4

We start with Sr2RuO4 (or x = 2). This is a good metal,
forming a 3-dimensional but anisotropic Landau-Fermi
liquid at low temperatures [17,18]. Sr2RuO4 crystallizes
in the undistorted single-layered K2NiF4-structure [19,20]
(see Fig. 1) with lattice parameters quoted in Table 1. The
RuO6-octahedra are slightly elongated along the c-axis.
The Ru-ions have a formal valence Ru4+ and have a
tetragonal local symmetry. The 2p-O levels are completely
filled, leaving 4 electrons in t2g-subshell of the 4d-Ru lev-
els. The crystal field level scheme that would apply for an
isolated Ru4+-ion is shown in Figure 2. The upper eg-shell
(not included in this figure) is empty. The splitting be-
tween the xy-orbitals and the degenerate {xz, yz}-orbitals
is small. But the xy-orbitals π-hybridize with 2p-orbitals

Fig. 1. Basic crystal structure of isoelectronic alloy series
Ca2−xSrxRuO4.

Orbital-selective Mott (OSM) transition

Ca2−xSrxRuO4
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Fig. 2. Local electronic structure of isoelectronic alloy se-
ries Ca2−xSrxRuO4. In Ca2RuO4 spin-down electron occupies
xy-orbital (left panel); In Sr2RuO4 spin-down electron occu-
pies xz/yz-orbitals (right panel).
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Fig. 3. Density of t2g states for Sr2RuO4 obtained from LDA
calculation. The solid line is the DOS for the (xz, yz)-orbitals
and the dashed line for the xy-orbital. (n(yz,zx), nxy) indicates
the electron occupation of the orbitals.

of all 4 in-plane O-neighbors while the xz(yz)-orbitals
π-hybridize only with the 2 O-neighbors along the x(y)-
axis. As a result the xy-bandwidth is approximately twice
the {xz, yz} bandwidth (see Fig. 3). The LDA calcula-
tions [8] give 3 Fermi surface sheets, one with essentially
xy and two with mixed {xz, yz} character. Their shape
and volume agree with the de Haas-van Alphen results [7].

The volumes contained by the Fermi surface sheets
give an almost equal occupancy of each of the 3 t2g-
orbitals. If we denote the occupancy of the {xz, yz} and
(xy)-orbitals by (n(α,β), nγ), then Sr2RuO4 has the frac-
tional occupancy (8/3, 4/3). Although there are clear
signs of strong correlations in the enhanced effective mass
(enhancements ∼3−4 [7,21,22]) and low effective Fermi
temperature, the low-temperature behavior is clearly that
of a well-defined Landau-Fermi liquid.

Fig. 4. Scheme of crystal distortion of Ca2−xSrxRuO4. Con-
secutive structural change of the O-octahedra in the alloy series
Ca2−xSrxRuO4. (a) Ideal structure K2NiF4-type (space group
I4/mmm); (b) Space group I41/acd derives from I4/mmm by
rotation around [001]-axis; (c) Space group P21/c described
by the additional rotation around a free axis in the octahe-
dron basis plane. (d) Space group Pbca derived from the ideal
structure by rotation around the [001]- and [110]-axes.

Turning to the other end member, Ca2RuO4 or x = 0,
the substitution of the smaller Ca2+-ion for Sr2+ does not
lead to a uniform shrinking of the lattice parameter. In-
stead the RuO6-octahedra undergo a combined rotation
and tilt (Pbca-structure) so that the Ru-O bond length
is preserved but the Ru-Ru separation contracts. In Fig-
ure 4 we illustrate the relevant distortion of the crystal
structure. This distortion bends the Ru-O-Ru bond an-
gle away from 180o, thereby reducing the bandwidth of
the t2g-orbitals. Also the smaller size of the Ca2+-ion de-
creases the interlayer distance (i.e. the c-axis lattice con-
stant) which results in a change from elongation to a com-
pression of the RuO6-octahedra. This in turn changes the
sign of the energy splitting between the (xy)- and (xz, yz)-
orbitals, so that now the xy-orbital lies lower in energy
(see Fig. 2). The crystal structure is orthorhombic (see
Tab. 1). All RuO6-octahedra are equivalent with a rota-
tion around their long axis (0 0 1) and a tilt around the
diagonal in-plane axis (1 1 0) (Fig. 4d). Note all inplane
O-ions are equivalent in this structure.

Ca2RuO4 is an AF insulator. The LDA+U method [9]
which is based upon spin-orbital unrestricted Hartree-
Fock equation (i.e. a static mean field treatment),

xy

yz,zx
DFT

Critical :Uc Anisimov et al., Eur. Phys. J. B 25, 191 (2002) 
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Fig. 6. Results of LDA+DMFT(NCA) calculations obtained
within LDA DOS for Sr2RuO4. The solid line is the DOS for
xz, yz-orbitals and the dashed line for (xy)-orbital. At U =
1.5 eV the xz, yz-orbitals become localized. At U = 2.5 eV
additionally the localization of xy-orbital occurs. The Fermi
energy is defined to be zero and was adjusted to conserve the
number of particles (4 electrons per site).

an expansion around an infinite coordination number and
formulates the problem in terms of an effective Anderson
impurity model which is to be solved self-consistently. In
this way the growth of onsite correlations can be treated
as the Mott transition is approached in a paramagnetic
metal. Recent advances use LDA calculations to determine
the input parameters and a non-crossing approximation
(NCA) to solve the effective Anderson model.

We performed a series of calculations using this LDA
+ DMFT (NCA) approximation scheme [26,27] for the
Sr2RuO4 structure. We increased the value of Hubbard-
U to examine how the onsite correlations grow. Figure 6
shows a series of results for the density of states (DOS) in
the xy- and (xz, yz)-subbands. Since these subbands have
quite different widths, the onset of Mott localization oc-
curs at different critical values of U . Thus we see that as U
is increased through a value of U ≈ 1.5 eV there is a trans-
fer of electrons between the subbands so that the integer
occupancy of 3 electrons and Mott localization appears
in (xz, yz)-subbands while the broader half-filled xy-band
remains itinerant. This unusual behavior is driven by the
combination of the crystal field splitting, as shown in Fig-
ure 2 ((xz, yz) lower) and the narrower bandwidth of the

(xz, yz)-orbitals. A further increase in the value of U to
U ≈ 2.5 eV is required to obtain Mott localization also in
the xy-subband.

These results lead us naturally to the following pro-
posal to explain the anomalous properties in the criti-
cal concentrations x = xc. The electronic configuration
is now (3,1). The 3 electrons in the {xz, yz}-subbands are
Mott localized and have a local moment of S = 1/2. The
remaining valence electrons are in the itinerant xy-band
and is responsible for the metallic character. Thus at this
concentration we have the unusual situation of localiza-
tion in only part of the 4d-orbitals and coexisting localized
and itinerant 4d-orbitals. Note that in the orthorhombic
crystal structure at x = xc the 2 subbands have differ-
ent parity under reflection around a RuO2-plane, similar
to tetragonal Sr2RuO4, which forbids direct hybridization
between the subbands. This proposal explains in a natural
way the unexpected moment of S = 1/2 of the Ru-ions and
the coexistence of metallic behavior and local moments.

Note that the calculations are carried out more con-
veniently by increasing the value of the onsite repulsion,
U which however should not change appreciably with the
concentration, x. In reality it is the bandwidth which is
changing with the decreasing x as the RuO6-octahedra
progressively rotate when Ca is substituted for Sr. The
key result however is the existence of a parameter range
where this partial localization is stable. The fact that we
calculated only for the highly symmetric Sr2RuO4 struc-
ture, rather than the distorted structure is, we believe,
unimportant in establishing this (3,1) configuration as a
stable electronic configuration.

3.2 Region II (0.5 > x > 0.2)

At lower values of x we enter Region II (0.5 > x > 0.2)
characterized by a tilting plus rotation of RuO6-
octahedra. Ca1.8Sr0.2RuO4 has a low-symmetry crystal
structure with the space group P21/c [28], which can be
obtained from the tetragonal I4/mmm structure by ro-
tating and tilting of the RuO6-octahedra similar to pure
Ca2RuO4 but with a smaller tilting angle [28] (Fig. 4c).
There are now two types of in-plane oxygen ions and
two types inequivalent of RuO6-octahedra. The RuO6-
octahedra continue to be elongated in this region so that
the xy-orbital continues to lie higher in energy. The metal-
lic character of the alloys in this region shows that the itin-
erant character of the xy-subband is preserved, although
the bandwidth will be narrowed by the additional tilt-
ing distortion of the RuO6-octahedra. Our conclusion is
that the (3,1) orbital occupation continues to hold also
in Region II with localization of the electrons only in the
{xz, yz}-subband.

3.3 Region I (0.2 > x > 0) Ca-rich

The Ca-rich region is characterized by a transition to an
insulating groundstate and simultaneously a change in the
crystal structure. The S-Pbca structure of the groundstate
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Extreme case:  
Orbital-selectivity in low-dimensional magnets
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FIG. 2. (Color online) The total and partial magnetization per
dimer, calculated in C-DMFT. t ′ = 0.1 eV, td = 0.2 eV, tc = 6td ,
JH = td/2, U = 5td , T = 0.1 eV. Inset shows dependence of total
magnetization on Hund’s rule exchange.

interactions U ≫ t already a relatively weak Hund’s coupling
JH > t2/U is sufficient for that. But in principle we can get
the HL state only due to the strong Hund’s coupling, even
without Hubbard repulsion.

DMFT calculations. To check the treatment presented
above we consider a model system—a one-dimensional chain
of dimers—using the cluster extension of the dynamical mean-
field theory (C-DMFT) [13] with the Hirsh-Fye (HF-QMC)
solver [14]. There are two orbitals and two electrons per site
in the dimer. Intradimer hoppings are td and tc, interdimer
−t ′ is the same for both orbitals and allowed only for
the neighboring sites. We neglected the intersite Coulomb
interaction, so that the sites are coupled by the kinetic energy
term only. The on-site Coulomb repulsion term was taken to be
Uσσ ′

mm = U , Uσσ ′

mm′ = U − 2JH , Uσσ
mm′ = U − 3JH . The Hund’s

rule exchange was considered in the Ising form.
The field dependence of the magnetization presented in

Fig. 2 shows that there is no magnetic response in a zero
external field (as here both tc and td are nonzero, the ground
state of a dimer is a singlet for both electrons). An increase of
Bext drives the systems to the orbital-selective regime, when c
electrons initially are predominantly in the MO singlet state,
while d electrons are detached, and start to be polarized only
at higher fields, and also the c-electron singlet is broken and c
electrons become polarized. As was argued above an internal
exchange field (e.g., Heisenberg exchange) may result in a
similar situation. Moreover the range of the orbital-selective
phase depends on the JH /tc ratio (see inset of Fig. 2).

A different character of the orbitals is also reflected
in the temperature dependence of the uniform magnetic
susceptibility χ (T ). It is seen in Fig. 3 that the overall
temperature behavior of χ is consistent with what one may
expected for dimers: a drastic decrease at low temperatures
(LT) due to the spin singlet state formation and Curie-like
tail at high temperatures. However partial contributions to the
susceptibility is again quite different. The orbital with the
smallest hopping provides the largest contribution at low T.
Corresponding electrons behave as free spins at intermediate
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FIG. 3. (Color online) Uniform magnetic susceptibility, calcu-
lated in C-DMFT as χ = M/Bext, where M is magnetization per
dimer, and Bext external magnetic field. t ′ = 0.1 eV, td = 0.4 eV,
Bext = 0.1 eV, U = 5.25t ′, tc = 3td , JH = 1.25td .

temperatures, whereas c electrons are still in a singlet dimer
state. Only with further increase of the temperature the second
orbital starts to contribute. This may result in the shift of
the magnetic susceptibility maximum and has to be taken
into account in the fitting procedures (to evaluate exchange
integrals) for systems with the orbital-selective behavior.

Thus these results indeed confirm our model treatment
presented above: for the chosen parameters one may ob-
serve formation of the orbital-selective singlet state, which,
if we start from a regular system and make spontaneous
dimerization, would correspond to the orbital-selective Peierls
transition.

Real materials. As we saw above, the orbital-selective
singlet state can occur for specific conditions: when hopping
for one orbital in a dimer is comparable or larger than the
intra-atomic Hund’s exchange (and Hubbard repulsion). This
is less likely in 3d systems, for which U or JH are usually larger
than hopping (U ∼ 3–6 eV, JH ∼ 0.7–1.0 eV), and this is why
this situation is not realized in V2O3 [15], as was proposed by
Castellani et al. [16].

But such state could easily appear in 4d and 5d systems,
where both JH and U are strongly reduced, while t is getting
larger. Thus for 5d metals typically U ∼ 1–2 eV, JH ∼ 0.5 eV,
but the radius of 5d orbitals is larger than of 3d, and we can
get to the situation with dd hopping at least of order or larger
than (U , JH ).

Such a situation may be met in some systems with
dimerization, e.g., Li2RuO3, where Ru-Ru dimers are formed
in the common edge (of RuO6 octahedra) geometry. The
hopping between two xy orbitals directed to each other in
the dimer is ∼1.2 eV, which is much larger than between any
other of t2g orbitals (∼0.3 eV) [17]. This may explain why in
the high-temperature phase magnetic susceptibility behaves as
for paramagnetic S = 1/2, not S = 1, centers (as it should be
for Ru4+) [17].

Also some 3d compounds can show the behavior described
above, although it is less likely than for 4d and 5d systems.
Most probably this is the situation in V4O7 [18–20]. The NMR
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FIG. 2. (Color online) The total and partial magnetization per
dimer, calculated in C-DMFT. t ′ = 0.1 eV, td = 0.2 eV, tc = 6td ,
JH = td/2, U = 5td , T = 0.1 eV. Inset shows dependence of total
magnetization on Hund’s rule exchange.

interactions U ≫ t already a relatively weak Hund’s coupling
JH > t2/U is sufficient for that. But in principle we can get
the HL state only due to the strong Hund’s coupling, even
without Hubbard repulsion.

DMFT calculations. To check the treatment presented
above we consider a model system—a one-dimensional chain
of dimers—using the cluster extension of the dynamical mean-
field theory (C-DMFT) [13] with the Hirsh-Fye (HF-QMC)
solver [14]. There are two orbitals and two electrons per site
in the dimer. Intradimer hoppings are td and tc, interdimer
−t ′ is the same for both orbitals and allowed only for
the neighboring sites. We neglected the intersite Coulomb
interaction, so that the sites are coupled by the kinetic energy
term only. The on-site Coulomb repulsion term was taken to be
Uσσ ′

mm = U , Uσσ ′

mm′ = U − 2JH , Uσσ
mm′ = U − 3JH . The Hund’s

rule exchange was considered in the Ising form.
The field dependence of the magnetization presented in

Fig. 2 shows that there is no magnetic response in a zero
external field (as here both tc and td are nonzero, the ground
state of a dimer is a singlet for both electrons). An increase of
Bext drives the systems to the orbital-selective regime, when c
electrons initially are predominantly in the MO singlet state,
while d electrons are detached, and start to be polarized only
at higher fields, and also the c-electron singlet is broken and c
electrons become polarized. As was argued above an internal
exchange field (e.g., Heisenberg exchange) may result in a
similar situation. Moreover the range of the orbital-selective
phase depends on the JH /tc ratio (see inset of Fig. 2).

A different character of the orbitals is also reflected
in the temperature dependence of the uniform magnetic
susceptibility χ (T ). It is seen in Fig. 3 that the overall
temperature behavior of χ is consistent with what one may
expected for dimers: a drastic decrease at low temperatures
(LT) due to the spin singlet state formation and Curie-like
tail at high temperatures. However partial contributions to the
susceptibility is again quite different. The orbital with the
smallest hopping provides the largest contribution at low T.
Corresponding electrons behave as free spins at intermediate
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FIG. 3. (Color online) Uniform magnetic susceptibility, calcu-
lated in C-DMFT as χ = M/Bext, where M is magnetization per
dimer, and Bext external magnetic field. t ′ = 0.1 eV, td = 0.4 eV,
Bext = 0.1 eV, U = 5.25t ′, tc = 3td , JH = 1.25td .

temperatures, whereas c electrons are still in a singlet dimer
state. Only with further increase of the temperature the second
orbital starts to contribute. This may result in the shift of
the magnetic susceptibility maximum and has to be taken
into account in the fitting procedures (to evaluate exchange
integrals) for systems with the orbital-selective behavior.

Thus these results indeed confirm our model treatment
presented above: for the chosen parameters one may ob-
serve formation of the orbital-selective singlet state, which,
if we start from a regular system and make spontaneous
dimerization, would correspond to the orbital-selective Peierls
transition.

Real materials. As we saw above, the orbital-selective
singlet state can occur for specific conditions: when hopping
for one orbital in a dimer is comparable or larger than the
intra-atomic Hund’s exchange (and Hubbard repulsion). This
is less likely in 3d systems, for which U or JH are usually larger
than hopping (U ∼ 3–6 eV, JH ∼ 0.7–1.0 eV), and this is why
this situation is not realized in V2O3 [15], as was proposed by
Castellani et al. [16].

But such state could easily appear in 4d and 5d systems,
where both JH and U are strongly reduced, while t is getting
larger. Thus for 5d metals typically U ∼ 1–2 eV, JH ∼ 0.5 eV,
but the radius of 5d orbitals is larger than of 3d, and we can
get to the situation with dd hopping at least of order or larger
than (U , JH ).

Such a situation may be met in some systems with
dimerization, e.g., Li2RuO3, where Ru-Ru dimers are formed
in the common edge (of RuO6 octahedra) geometry. The
hopping between two xy orbitals directed to each other in
the dimer is ∼1.2 eV, which is much larger than between any
other of t2g orbitals (∼0.3 eV) [17]. This may explain why in
the high-temperature phase magnetic susceptibility behaves as
for paramagnetic S = 1/2, not S = 1, centers (as it should be
for Ru4+) [17].

Also some 3d compounds can show the behavior described
above, although it is less likely than for 4d and 5d systems.
Most probably this is the situation in V4O7 [18–20]. The NMR
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FIG. 2. (Color online) The total and partial magnetization per
dimer, calculated in C-DMFT. t ′ = 0.1 eV, td = 0.2 eV, tc = 6td ,
JH = td/2, U = 5td , T = 0.1 eV. Inset shows dependence of total
magnetization on Hund’s rule exchange.

interactions U ≫ t already a relatively weak Hund’s coupling
JH > t2/U is sufficient for that. But in principle we can get
the HL state only due to the strong Hund’s coupling, even
without Hubbard repulsion.

DMFT calculations. To check the treatment presented
above we consider a model system—a one-dimensional chain
of dimers—using the cluster extension of the dynamical mean-
field theory (C-DMFT) [13] with the Hirsh-Fye (HF-QMC)
solver [14]. There are two orbitals and two electrons per site
in the dimer. Intradimer hoppings are td and tc, interdimer
−t ′ is the same for both orbitals and allowed only for
the neighboring sites. We neglected the intersite Coulomb
interaction, so that the sites are coupled by the kinetic energy
term only. The on-site Coulomb repulsion term was taken to be
Uσσ ′

mm = U , Uσσ ′

mm′ = U − 2JH , Uσσ
mm′ = U − 3JH . The Hund’s

rule exchange was considered in the Ising form.
The field dependence of the magnetization presented in

Fig. 2 shows that there is no magnetic response in a zero
external field (as here both tc and td are nonzero, the ground
state of a dimer is a singlet for both electrons). An increase of
Bext drives the systems to the orbital-selective regime, when c
electrons initially are predominantly in the MO singlet state,
while d electrons are detached, and start to be polarized only
at higher fields, and also the c-electron singlet is broken and c
electrons become polarized. As was argued above an internal
exchange field (e.g., Heisenberg exchange) may result in a
similar situation. Moreover the range of the orbital-selective
phase depends on the JH /tc ratio (see inset of Fig. 2).

A different character of the orbitals is also reflected
in the temperature dependence of the uniform magnetic
susceptibility χ (T ). It is seen in Fig. 3 that the overall
temperature behavior of χ is consistent with what one may
expected for dimers: a drastic decrease at low temperatures
(LT) due to the spin singlet state formation and Curie-like
tail at high temperatures. However partial contributions to the
susceptibility is again quite different. The orbital with the
smallest hopping provides the largest contribution at low T.
Corresponding electrons behave as free spins at intermediate
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FIG. 3. (Color online) Uniform magnetic susceptibility, calcu-
lated in C-DMFT as χ = M/Bext, where M is magnetization per
dimer, and Bext external magnetic field. t ′ = 0.1 eV, td = 0.4 eV,
Bext = 0.1 eV, U = 5.25t ′, tc = 3td , JH = 1.25td .

temperatures, whereas c electrons are still in a singlet dimer
state. Only with further increase of the temperature the second
orbital starts to contribute. This may result in the shift of
the magnetic susceptibility maximum and has to be taken
into account in the fitting procedures (to evaluate exchange
integrals) for systems with the orbital-selective behavior.

Thus these results indeed confirm our model treatment
presented above: for the chosen parameters one may ob-
serve formation of the orbital-selective singlet state, which,
if we start from a regular system and make spontaneous
dimerization, would correspond to the orbital-selective Peierls
transition.

Real materials. As we saw above, the orbital-selective
singlet state can occur for specific conditions: when hopping
for one orbital in a dimer is comparable or larger than the
intra-atomic Hund’s exchange (and Hubbard repulsion). This
is less likely in 3d systems, for which U or JH are usually larger
than hopping (U ∼ 3–6 eV, JH ∼ 0.7–1.0 eV), and this is why
this situation is not realized in V2O3 [15], as was proposed by
Castellani et al. [16].

But such state could easily appear in 4d and 5d systems,
where both JH and U are strongly reduced, while t is getting
larger. Thus for 5d metals typically U ∼ 1–2 eV, JH ∼ 0.5 eV,
but the radius of 5d orbitals is larger than of 3d, and we can
get to the situation with dd hopping at least of order or larger
than (U , JH ).

Such a situation may be met in some systems with
dimerization, e.g., Li2RuO3, where Ru-Ru dimers are formed
in the common edge (of RuO6 octahedra) geometry. The
hopping between two xy orbitals directed to each other in
the dimer is ∼1.2 eV, which is much larger than between any
other of t2g orbitals (∼0.3 eV) [17]. This may explain why in
the high-temperature phase magnetic susceptibility behaves as
for paramagnetic S = 1/2, not S = 1, centers (as it should be
for Ru4+) [17].

Also some 3d compounds can show the behavior described
above, although it is less likely than for 4d and 5d systems.
Most probably this is the situation in V4O7 [18–20]. The NMR
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Peierls transition - simplest case of  
1D + half-filling (1 electron/site)
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Reduction of dimensionality 
Orbitally-induced Peierls effect
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Peierls transition - importance of orbital 
degrees of freedom

E.g. edge-sharing  
geometry

xy

ε

kx

• Wide nearly 1D bands
susceptible to Peierls transition

ε

kx
xz /yz

• Localized bands susceptible to U; 
• Crystal-field can strongly change 

position of the band;
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Factor II: Orbital-selectivity with respect to 
Peierls transition 
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Orbitally-induced Peierls effect: Kagome lattice 
Na2Ti3Cl8: Ti2+: d2 (S=1) 
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• Trimerization at 200 K; 
• Non-magnetic state 

T<200 K

ε(k)
Three 1D bands!
Band filling: 1/2

Trimerization = Dimerization along each direction 
D. Khomskii, T. Mizokawa, S.S. PRL 127, 049701 (2021)
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S=0 ground state!
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−2t
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2tNa2Ti3Cl8 for both cooling and warming is shown in Figure 4a.
The LT phase maintains paramagnetic behavior down to T = 2
K. However, the response below T = 100 K is dominated by a
Curie tail that likely originates from defects from the extreme
air sensitivity of this material (Figures S2 and S3 and Table
S3). Notably, the percent drop in the susceptibility from HT
→ IT and IT → LT with respect to HT → LT upon cooling is
robust across all measured samples, indicative of intrinsic
behavior. The average drops in χ for HT → IT and IT →
LTares 37(2)% and 63(2)%, respectively, which is in
agreement with previously reported values of 35.8% and
64.2%.36,37 This decrease in the magnetic susceptibility is
consistent with the electrons associated with the S = 1
moments on the Ti2+ kagome ́ sites delocalizing to form metal−
metal bonds in the trimerized [Ti3]6+ clusters.
The heat capacity analysis of Na2Ti3Cl8 is shown in Figure

4b. The semiadiabatic short-pulse method was used to measure
the molar heat capacity from T = 2−300 K (black circles), but
it was unable to capture the large first-order phase transitions.
Therefore, a long-pulse experiment was used to characterize
the phase transition upon heating and cooling.41 The most
representative fits from this analysis for each transition are
included together in Figure 4b to give the overall heat capacity
(see also Figure S4). The heat capacity of the transition is
unaffected by magnetic fields up to μ0H = 9 T.
The calculated changes in the entropy of all three transitions

are ΔSLT→HT = 31.4(7) J (mol of f.u.)−1 K−1, ΔSHT→IT =
18.6(1.0) J (mol of f.u.)−1 K−1, and ΔSIT→LT= 16.8(1) J (mol
of f.u.)−1 K−1. The sum of the entropy changes HT → IT and
IT → LT is 35.4(1.2) J (mol of f.u.)−1 K−1, slightly larger than
that estimated for the LT → HT transition. This is likely an
artifact of the long pulses not capturing all of the entropy upon
warming. Regardless, the total entropy change is larger than 3R
ln(3) = 27.4 J (mol of f.u.)−1. This suggests a loss of all
magnetic degrees of freedom (i.e., the geometric frustration is
relieved, and all magnetic entropy is lost), in addition to
nonnegligible entropy changes from the structural changes.
The loss of all magnetic degrees of freedom is consistent with

the formation of Ti−Ti bonds from the (formerly) unpaired
electrons on each Ti2+.
The specific heat below T = 20 K shows the signatures of a

T-linear contribution to the specific heat (Figure S5 and Table
S4), unexpected because Na2Ti3Cl8 is a dark-forest-green
insulator, indicating a band gap of ∼1.7 eV. However, the
extreme air sensitivity of the sample complicates further
investigation because it is known that defects can induce T-
linear terms in related materials.28

■ DISCUSSION
There are many interesting questions raised by our results:
What is the balance of electronic interactions that drives the
trimerization? How can the IT be stabilized upon cooling but
not upon warming? How does this trimerization induce a polar
state? Are any of the phases observed related to the theoretical
Hexagonal Singlet State?
The specific heat measurements, as a bulk thermodynamic

quantity, give some insight into the balance of energies
stabilizing the LT and HT states. For a constant pressure, first-
order phase transition, the enthalpy of the transition (ΔHt) is
directly related to the entropy change of the transition (ΔSt)
and the temperature (Tt): ΔHt = Tt*ΔSt. Using the measured
values of ΔSt and Tt for the LT → HT transition upon
warming, we obtain a value of ΔHt = 75 meV per cluster. This
means that, in net, there is only an enthalpic energy gain of
∼25 meV per Ti−Ti bond from the metal−metal bonds.
Initially, this may seem surprising, because chemical bonds
have characteristic energy scales of electronvolts, but can be
understood as the gain in energy for Ti−Ti bonds being offset
by the energy cost of disturbing Ti−Cl and Na−Cl bond
lengths from their optimal values to accommodate formation
of the Ti−Ti bonds. This small net value then allows the
entropic changes associated with magnetism to have a dramatic
impact, as evidenced by the fact that ∼80% of the entropy
change of the LT → HT transition is associated with a loss of
the paramagnetic spins. In other words, while further work is
required to elucidate the microscopic details, from a
thermodynamics perspective, it is the entropic energy, of

Figure 4. (a) Magnetic susceptibility of Na2Ti3Cl8 for zero field cooled upon warming (dark-red dashed arrow) and field cooled upon cooling
(royal-blue dot-dashed arrow) under a 1 T applied field. (b) Heat capacity over temperature versus temperature for Na2Ti3Cl8 collected using
short-pulse (black circles) and long-pulse (red squares, purple diamonds, and blue triangles) techniques.
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Orbitally-induced Peierls effect: Triangular lattice 
ReS2: diamond necklace

ReS2 Re4+ : t3
2g (ne = 3)

ε(k)

Three 1D bands

Band filling: 1/2

Dimerization in three directions!
Formation of  

“diamond necklace” D. Khomskii, S.S. Chem. Rev. 121, 2992 (2021)
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Reduction of dimensionality 
Orbitally-induced Peierls effect

Spinels (3D structure): AB2O4
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Natural formation of 1D bands due to orbitals…



CuIr2S4: spinel

TMI, there appears the net tetragonal distortion (elonga-
tion, c=a ! 1:03 [4]), and, besides that, the complicated
octamer structure appears [2]: Ir3" and Ir4" order in oc-
tamers, and the Ir4" octamers have an alternation of
short and long bonds; see Fig. 2 in [2]. This beautiful
structure seems extremely unusual. However, the situation
is much simpler if one looks at what happens in the straight
Ir chains: one immediately notices that five out of six
such chains have a tetramerization—an alternation of
Ir3"=Ir3"=Ir4"=Ir4"= . . .— and one of them has a corre-
sponding dimerization; see Fig. 2(a). The tetramerization
in CuIr2S4 was also noticed in [5].

One can naturally explain this tetramerization pattern if
one looks at the electronic structure of this compound,
schematically shown in Fig. 2(b). Because of the tetragonal
elongation, the triply degenerate t2g levels are split by a CF
splitting, and, besides (which is probably more important),
the xy band becomes broader. With the 5.5 electrons (or
0.5 hole) per Ir in these levels, the lowest two bands are
fully occupied, and the upper xy one-dimensional band is
3=4 filled. Thus, we can expect a Peierls or charge density
wave transition, accompanied by tetramerization in the xy
chains (formation of superstructure with Q! ! 2kF ! "=2
along the #1; 1; 0$ and #1;%1; 0$ directions), with holes in
the xy orbitals, as shown in Fig. 2(a). As is seen from this
figure, the resulting state exactly corresponds to the one
found in [2]: Ir3" and Ir4" form octamers. Besides, the Ir4"

pairs in the xy chains have orbitals directed towards one
another; thus these pairs form spin singlets. When we
release the lattice, corresponding bonds become shorter,
again consistent with the structure of [2]. Thus the expla-
nation of this apparently complicated structure becomes

extremely simple and natural if we look at it from the
viewpoint of straight Ir chains, which, for this orbital
occupation, form natural building blocks in spinels.

The same idea explains also the chiral superstructures
observed in MgTi2O4 [3]. Below TMI at 260 K, a tetragonal
distortion (here compression) appears also in this system,
together with the inequivalent bonds, so that, if one con-
nects short and long bonds, they form spirals along the c
or the z direction, which may be both left and right mov-
ing. Apparently, on the short bonds, Ti-Ti pairs form spin
singlets which is rather typical for d1 configurations. This
naturally explains the drop of magnetic susceptibility at
TMI [6]. This superstructure, the origin of which looks very
puzzling, again can be explained very easily if one looks at
the situation in the straight Ti chains. One immediately
notices that in all chains running in the #0; 1; 1$, #0; 1;%1$,
#1; 0; 1$, and #1; 0;%1$ directions (lying in the zx and yz
planes) one has the tetramerization: an alternation of short,
intermediate, long, and intermediate bonds. This structure
appears naturally if we look at the electronic structure of
this system, Fig. 3(b). In the high temperature phase, Ti3"

ions have one electron in the triply degenerate t2g level,
which in the tight-binding scheme would give three one-
dimensional degenerate bands (we neglect here small
trigonal splitting). One can reduce the band energy by
tetragonal distortion— the effect similar to the band
Jahn-Teller effect invoked by Labbe and Friedel to explain
the cubic-tetragonal transition in A15 compounds (V3Si,
Nb3Sn) [7]. The tetragonal compression observed in
MgTi2O4 increases the bandwidths of the zx and yz bands
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FIG. 2 (color). (a) Charge and orbital ordering in CuIr2S4.
Octamer is shown by thick lines. Short singlet bonds are in-
dicated by double lines. (b) Schematic electronic structure of
CuIr2S4.
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FIG. 3 (color). (a) Orbital ordering in MgTi2O4. Short singlet
bonds are shown by double, intermediate–single, and long–
dashed lines. yz orbitals are shown in green and zx orbitals in
blue. (b) Schematic electronic structure of MgTi2O4. Note
different orientation of coordinate axes as compared with
Figs. 1 and 2.
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TMI, there appears the net tetragonal distortion (elonga-
tion, c=a ! 1:03 [4]), and, besides that, the complicated
octamer structure appears [2]: Ir3" and Ir4" order in oc-
tamers, and the Ir4" octamers have an alternation of
short and long bonds; see Fig. 2 in [2]. This beautiful
structure seems extremely unusual. However, the situation
is much simpler if one looks at what happens in the straight
Ir chains: one immediately notices that five out of six
such chains have a tetramerization—an alternation of
Ir3"=Ir3"=Ir4"=Ir4"= . . .— and one of them has a corre-
sponding dimerization; see Fig. 2(a). The tetramerization
in CuIr2S4 was also noticed in [5].

One can naturally explain this tetramerization pattern if
one looks at the electronic structure of this compound,
schematically shown in Fig. 2(b). Because of the tetragonal
elongation, the triply degenerate t2g levels are split by a CF
splitting, and, besides (which is probably more important),
the xy band becomes broader. With the 5.5 electrons (or
0.5 hole) per Ir in these levels, the lowest two bands are
fully occupied, and the upper xy one-dimensional band is
3=4 filled. Thus, we can expect a Peierls or charge density
wave transition, accompanied by tetramerization in the xy
chains (formation of superstructure with Q! ! 2kF ! "=2
along the #1; 1; 0$ and #1;%1; 0$ directions), with holes in
the xy orbitals, as shown in Fig. 2(a). As is seen from this
figure, the resulting state exactly corresponds to the one
found in [2]: Ir3" and Ir4" form octamers. Besides, the Ir4"

pairs in the xy chains have orbitals directed towards one
another; thus these pairs form spin singlets. When we
release the lattice, corresponding bonds become shorter,
again consistent with the structure of [2]. Thus the expla-
nation of this apparently complicated structure becomes

extremely simple and natural if we look at it from the
viewpoint of straight Ir chains, which, for this orbital
occupation, form natural building blocks in spinels.

The same idea explains also the chiral superstructures
observed in MgTi2O4 [3]. Below TMI at 260 K, a tetragonal
distortion (here compression) appears also in this system,
together with the inequivalent bonds, so that, if one con-
nects short and long bonds, they form spirals along the c
or the z direction, which may be both left and right mov-
ing. Apparently, on the short bonds, Ti-Ti pairs form spin
singlets which is rather typical for d1 configurations. This
naturally explains the drop of magnetic susceptibility at
TMI [6]. This superstructure, the origin of which looks very
puzzling, again can be explained very easily if one looks at
the situation in the straight Ti chains. One immediately
notices that in all chains running in the #0; 1; 1$, #0; 1;%1$,
#1; 0; 1$, and #1; 0;%1$ directions (lying in the zx and yz
planes) one has the tetramerization: an alternation of short,
intermediate, long, and intermediate bonds. This structure
appears naturally if we look at the electronic structure of
this system, Fig. 3(b). In the high temperature phase, Ti3"

ions have one electron in the triply degenerate t2g level,
which in the tight-binding scheme would give three one-
dimensional degenerate bands (we neglect here small
trigonal splitting). One can reduce the band energy by
tetragonal distortion— the effect similar to the band
Jahn-Teller effect invoked by Labbe and Friedel to explain
the cubic-tetragonal transition in A15 compounds (V3Si,
Nb3Sn) [7]. The tetragonal compression observed in
MgTi2O4 increases the bandwidths of the zx and yz bands
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Octamer is shown by thick lines. Short singlet bonds are in-
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different orientation of coordinate axes as compared with
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Orbitally induced Peierls effect: 
Tetramerization in spinel CuIr2S4

Ir3.5+: d5.5

Tetramerization!

Band filling: 1/4
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Orbitally induced Peierls effect: 
Tetramerization in spinel CuIr2S4
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Directional character 
of orbitals 

Peierls-like 
transitions
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Reduction of dimensionality due to orbital 
degrees of freedom 

Other examples

D. Khomskii, S.S. Chem. Rev. 121, 2992 (2021)
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Take-home messages

• Orbitals can affect the 
crystal structure

• Orbitals may reduce dimensionality of 
a magnetic subsystem

• Orbitals can define magnetic 
properties

S.S. and D. Khomskii, Physics-Uspekhi 60, 1121 (2017) 
D. Khomskii and S.S. Chem. Rev. 121, 2992 (2021)

K. KOJIMA et al. PHYSICAL REVIEW B 100, 235120 (2019)

Our results successfully solve the long-standing issue of the
cluster patterns of LiVO2, and provide an experimental basis
for identifying the mechanism of trimerization.

II. EXPERIMENT

All samples were prepared according to the recipe sug-
gested by Katayama et al. [8] and Tian et al. [16]. Our
synchrotron powder x-ray-diffraction experiments clarified
that the ratios of Li/V are 1.00(3) for LiVS2 and 0.97(1)
LiVO2, respectively. Both samples were confirmed to ex-
hibit clear transitions at the reported temperatures using the
synchrotron powder x-ray-diffraction experiment. A single-
crystal x-ray-diffraction experiment was performed using
R-AXIS RAPID-S (RIGAKU) equipped with a Mo tar-
get. Synchrotron powder x-ray-diffraction experiments with
E = 19 keV were performed at the BL5S2 beamline equipped
at Aichi Synchrotron, Japan. RIETAN-FP and VESTA soft-
ware were employed for the Rietveld analysis and graphical
purpose, respectively [25,26]. PILATUS 100 K was used for
high-resolution measurement and high-speed data collection.
High-energy synchrotron x-ray-diffraction experiments with
E = 61 keV was performed for collecting the data for PDF
analysis at BL04B2 at SPring-8, Japan. The hybrid detectors
of Ge and CdTe were employed there. The reduced PDF
G(r) was obtained by the conventional Fourier transform of
the collected data [27]. The PDFgui package was used for
analyzing the G(r) [28].

III. RESULTS AND DISCUSSION

A. X-ray diffraction analysis

Figures 1(a) and 1(b) show the single-crystal x-ray-
diffraction patterns of LiVO2 obtained at 300 K. The su-
perstructure spots appearing at (1/3, 1/3, 0), and the related
positions clearly appear in Fig. 1(a). However, the super-
structure spots are accompanied by diffuse streaks without
any internal structures along the c∗ direction, as shown in
Fig. 1(b), while the fundamental peaks remain sharp. As
shown in Fig. 1(c), the asymmetric broad superstructure peaks
appear in the powder x-ray-diffraction data below the tran-
sition temperature, consistent with the single-crystal x-ray-
diffraction results. The diffuse streaks appearing accompanied
by superstructure spots indicate the absence of long-range
ordering of cluster patterns along the c-axis direction in
LiVO2.

In contrast to LiVO2, the prominent superstructure peaks
appear for LiVS2 below the transition temperature, as shown
in the inset in Fig. 1(d). This observation indicates the pres-
ence of long-range ordering in cluster patterns along the c-axis
direction in LiVS2. By assuming the trigonal space group
P31m, we can successfully refine the crystal structure to
obtain the low-temperature crystal structure with vanadium
trimers, as shown in Figs. 1(e) and 1(f). Of note, vanadium
trimerization displaces the nearest-neighboring sulfur ion up-
wards due to the increasing Coulomb repulsion between them,
which results in an uneven buckling structure of sulfur layers
on both sides of the vanadium layer, as shown in the horizontal
graph in Fig. 1(f).

FIG. 1. (a),(b) Single-crystal x-ray-diffraction patterns of LiVO2

at 300 K perpendicular (a) and parallel (b) to c∗ direction.
(c) Powder-diffraction patterns above and below the transition tem-
perature of approximately 490 K in LiVO2. (d) Rietveld refinement
of LiVS2 at 300 K, assuming the space group P31m. The obtained
reliability factors were Rwp = 5.033%, Rp = 4.621%, Re = 3.181%
and S = 1.5821. The inset shows powder-diffraction patterns above
and below the transition temperature of 314 K. (e),(f) Obtained
crystal structures of LiVS2 at 300 K.

B. Crystallographic considerations

It is important to understand what distinguishes LiVO2
from LiVS2 in the absence/presence of long-range ordering
of cluster patterns along the c-axis direction. Here we explain
that the difference in stacking structure among them can
be attributed to the absence/presence of long-range order-
ing. While LiVO2 crystallizes in a 3c structure with R3̄m,
LiVS2 possesses a 1c structure with P3̄m1 at high tem-
peratures. When vanadium trimers are formed in the lower
layer as shown in Fig. 2(a), vanadium trimers displace the
nearest-neighboring sulfur ions upwards due to the Coulomb

FIG. 2. Schematic pictures of the (a) experimentally identified
trimer arrangements of LiVS2 and (b) expected trimer arrangement
of LiVO2. Inset shows the schematic picture of the trimer arrange-
ment viewed from the c-axis direction. Li ions are not displayed for
simplicity.
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• There are plenty of orbital-selective 
effects: Mott transition, magnetic 
properties


