

Orbital degrees of freedom in condensed matter physics

Sergey V. Streltsov

Institute of metal physics Ekaterinburg, Russia

ussian Academy of Sciences

BEATLES

ORBITALS: HERE, THERE AND EVERYWHERE

Sergey V. Streltsov

Institute of metal physics Ekaterinburg, Russia

of Sciences

RSF

Russian Science Foundation

Introduction: *d*-orbitals in a crystal, cubic harmonics

Orbital degrees of freedom

Spin degrees of freedom

Math: spin operators $\hat{\vec{S}}$

for s = 1/2 $\langle \downarrow | \hat{S}^z | \downarrow \rangle = -1/2$ $\langle \uparrow | \hat{S}^z | \uparrow \rangle = 1/2$

Orbital degrees of freedom

pseudospin operators $\hat{\vec{ au}}$

t_{2g}

 $x^{2} - y^{2} = -\frac{1}{2}$ $\langle x^{2} - y^{2} | \hat{\tau}^{z} | x^{2} - y^{2} \rangle = -\frac{1}{2}$ $\langle z^{2} | \hat{\tau}^{z} | z^{2} \rangle = \frac{1}{2}$

Orbital degrees of freedom

3. Spin-orbit coupling - beyond the scope of this lecture

1. Interplay of different degrees of freedom:

Jahn-Teller effect

Jahn-Teller effect in a nutshell

by distorting surrounding

"Orbital-lattice" coupling

Introduction: Jahn-Teller $e \otimes E$ problem

Harmonic approximation: Highly degenerate ground state

Introduction: Jahn-Teller $e \otimes E$ problem

for an isolated octahedron

Distortion \locale Orbital

Distortions: $|\theta\rangle = \cos(\theta)Q_3 + \sin(\theta)Q_2$ **Orbitals:** $|\theta\rangle = \cos(\theta/2) |z^2\rangle + \sin(\theta/2) |x^2 - y^2\rangle$

 θ parametrizes both distortions and orbitals

Cooperative Jahn-Teller distortions

(electron-lattice mechanism of orbital ordering)

1. Interplay of different degrees of freedom:

Orbitals - Magnetism (Kugel-Khomskii-like models)

Mott-Hubbard transition in a nutshell

Introduction: Orbitals and spins

Heisenberg model:

strong AFM

AntiFerro-orbital order

Modification of magnetic structure by orbitals

Goodenough - Kanamori - Anderson rules connect orbitals and spins

John Goodenough 1922 Nobel prize 2019

Junjiro Kanamori 1930-2012

Philip Anderson 1923-2020 Nobel prize 1977

Goodenough - Kanamori - Anderson rules connect orbitals and spins

Important general trend in insulating transition metal oxides

This is the reason why most of <u>insulating</u> transition metal oxides with localized electrons are AFM

FM		T_C	AFM		T_N	μ_{eff}	
	$YTiO_3$	30 K		NiO	$520~{ m K}$	$4.6\mu_B$	AFM-II
	$BaNaOs_2O_6$	$7 \mathrm{K}$		CoO	291 K	$5.1\mu_B$	AFM-II
	$NaCrGe_2O_6$	6 K		KNiF ₃	$275~{ m K}$	$4.7 \mu_B$	Г
				$LaFeO_3$	$750~{ m K}$	$3.0-4.4\mu_B$	Г
				FeS	$600~{ m K}$	$5.25\mu_B$	Г

Orbitals and spins: Kugel-Khomskii model and electronic mechanism of orbital ordering

Two levels with hoppings between the same orbitals

Pseudo-spin operators:

 $\hat{\tau^{z}} | 1 \rangle = 1/2 | 1 \rangle$ $\hat{\tau^{z}} | 2 \rangle = -1/2 | 2 \rangle$

Kugel-Khomskii Hamiltonian:

$$\hat{H}_{KK} = \sum_{i \neq j} J_{ij}^{S} \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j} + J_{ij}^{\tau} \hat{\tau}_{j} \hat{\tau}_{j} + 4J_{ij}^{S\tau} (\hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j}) (\hat{\tau}_{i} \hat{\tau}_{j}), \quad J^{S} = \frac{2t^{2}}{U} \left(1 - \frac{J_{H}}{U} \right), \quad J^{\tau} = J^{S\tau} = \frac{2t^{2}}{U} \left(1 + \frac{J_{H}}{U} \right)$$

The maximum energy gain is when electrons occupy <u>different</u> orbitals

Electrons can decide by themselves (without lattice), which orbitals to occupy

Electronic mechanism of orbital order

Hubbard model:

$$\hat{H} = \sum_{i \neq j} t_{ij}^{ab} c_{ia\sigma}^{\dagger} c_{jb\sigma} + \frac{1}{2} \sum_{i} U_{ab} n_{ia\sigma} n_{ib\sigma'} \left(1 - \delta_{ab} \delta_{\sigma\sigma'} \right) \\ - \sum_{i,a\neq b} J_{H}^{ab} \left(c_{ia\sigma}^{\dagger} c_{ia\sigma'} c_{ib\sigma'}^{\dagger} c_{ib\sigma} + c_{ia\sigma}^{\dagger} c_{ib\sigma} c_{ia\sigma'}^{\dagger} c_{ib\sigma'} \right)$$

Introduction: Orbitals and spins electronic (or KK) mechanism of orbital ordering

Heisenberg model (spins only)

$$\hat{H} = J \sum_{i \neq j} \hat{\vec{S}}_i \hat{\vec{S}}_j$$

Kugel-Khomskii-like models (spins+orbitals) Sov. Phys.- Usp. 25, 231 (1982)

$$\hat{H}_{KK} = \frac{t^2}{\tilde{U}} \sum_{i \neq j} \left(\frac{1}{2} + 2\hat{\vec{\tau}}_i \hat{\vec{\tau}}_j \right) \left[\frac{1}{2} + 2\hat{\vec{S}}_i \hat{\vec{S}}_j \right]$$

There is a coupling between orbitals and spins in materials with orbital (quasi) degeneracy (don't mix with spin-orbit interaction)

Kugel-Khomskii model (perovskite with *eg*-electrons)

$$\begin{split} H_{\theta \Phi \Phi} &= \frac{t^2}{U} \sum_{(\mathbf{i}, \mathbf{j})_z} \left\{ 8 \mathbf{S}_i \mathbf{S}_j \left[\tau_i^z \tau_j^z \left(1 + \frac{J_H}{U} \right) + \tau_j^z + \frac{1}{4} \left(1 - \frac{J_H}{U} \right) \right] + \right. \\ &+ 2 \left[\tau_i^z \tau_j^z \left(1 + \frac{J_H}{U} \right) - \tau_j^z \right] \right\} + \frac{t^2}{U} \sum_{(\mathbf{i}, \mathbf{j})_{x, y}} \left\{ 2 \mathbf{S}_i \mathbf{S}_j \left[\tau_i^z \tau_j^z \left(1 + \frac{J_H}{U} \right) \right] \right. \\ &- 2 \tau_j^z + \left(1 - \frac{J_H}{U} \right) \pm 2 \sqrt{3} \left(1 + \frac{J_H}{U} \right) \tau_i^z \tau_j^x \mp 2 \sqrt{3} \tau_j^x + \\ &+ 3 \left(1 + \frac{J_H}{U} \right) \tau_i^x \tau_j^x \right] + \frac{1}{2} \left[\tau_i^z \tau_j^z \left(1 + \frac{J_H}{U} \right) - \\ &- 2 \tau_j^z \pm 2 \sqrt{3} \left(1 + \frac{J_H}{U} \right) \tau_i^z \tau_j^x \pm 2 \sqrt{3} \tau_j^x + 3 \left(1 + \frac{J_H}{U} \tau_i^x \tau_j^x \right) \right] \end{split}$$

Kugel-Khomskii model: realization of a highly symmetric model

$$\hat{H}_{eff} = \sum_{i \neq j, k \neq l} \sum_{\{\lambda\}} \sum_{\sigma\sigma'} \frac{t_{\lambda\lambda'} t_{\lambda''\lambda'''}}{E_0 - \langle H_1 \rangle} c^{\dagger}_{i\lambda\sigma} c_{j\lambda'\sigma} c^{\dagger}_{k\lambda''\sigma'} c_{l\lambda'''\sigma'}$$

Excited level spectrum $\langle H_1 \rangle$ and a hopping structure $t_{ii}^{\lambda\lambda'}$ are the origin of all complications!

M. Yamada et al., PRL 121, 97201 (2018)

Note also possibility of dimerization A. Ushakov, I. Solovyev, S.S., JETP Letters 112, 642 (2020)

1. Interplay of different degrees of freedom:

Some examples

Example 2: Reduction of dimensionality Modulation of the exchange interaction

90° via orthogonal *p*-orbitals => FM $J_F \approx -\frac{2t^2 J_H}{U^2}$ weak

Example 2: Reduction of dimensionality Modulation of the exchange interaction

KCuF₃ - One of the best 1D antiferromagnet !!!

Orbitals reduce dimensionality: 3D ---- 1D

Example 4: Formation of a Haldane chain due to orbital ordering

Orbitals reduce dimensionality: 3D — **1D**

2. Directional character of orbitals:

Electronic structure: Orbital-selective Mott transition

Directional character of orbitals

t_{2g} orbitals on square lattice

Orbitals can have a very different dispersion, which can be reflected on e.g. transport properties

Orbital-selective Mott transition: Mott transition can occur separately for different orbitals

Critical U_c : 1.5 eV for xz/yz orbitals 2.5 eV for xy orbital

Anisimov et al., Eur. Phys. J. B 25, 191 (2002)

2. Directional character of orbitals:

Orbital-selectivity and magnetic properties

Double exchange as an orbital-selective effect

Double exchange is a natural realization of the orbital-selectivity

<u>Itinerant electrons</u> (e.g. e_g electrons)

<u>Localized electrons (e.g. t_{2g} electrons)</u>

Double-exchange mechanism of ferromagnetism

C. Zener, Phys. Rev. 82, 403 (1951)

AFM

No energy gain due to hoppings!

 $\delta E_{DE} \sim -Wx/2$

Examples:

CrO₂, CMR manganates etc.

Extreme case: Orbital-selectivity in low-dimensional magnets

c and d orbitals "work" at different T

c and d orbitals "work" at different B^{29}

Peierls transition - simplest case of 1D + half-filling (1 electron/site)

Instability at $|Q| = 2k_F$ Half-filling: $|k_F| = \pi/2a$, $|Q| = \pi/a$ Gain in kinetic energy: $\sim - |\Delta|^2 \ln |\Delta|$ Loss in elastic energy: $\sim |\Delta|^2$

Physical mechanism: nesting of the Fermi surface

$$\begin{split} \chi_0'(\overrightarrow{Q},\omega=0) &= \\ &= \frac{1}{\Omega} \sum_{\vec{k}} \frac{f(\varepsilon(\vec{k})) - f(\varepsilon(\vec{k}+\overrightarrow{Q}))}{\varepsilon(\vec{k}) - \varepsilon(\vec{k}+\overrightarrow{Q})} \end{split}$$

Factor I: lattice deformations are possible for other fillings!

Reduction of dimensionality Orbitally-induced Peierls effect

Peierls transition: 1D chain

Instability at $|Q| = 2k_F$

 $|k_F| = \frac{\pi}{4a} \qquad |Q| = \frac{\pi}{2a}$

Tetramerization

1/3 electron/site:

$$|k_F| = \frac{\pi}{3a} \qquad |Q| = \frac{2\pi}{3a}$$

Peierls transition - importance of orbital degrees of freedom

Factor II: Orbital-selectivity with respect to Peierls transition

E.g. edge-sharing geometry

xy

xz/yz

- Wide nearly 1D bands susceptible to Peierls transition
- Localized bands susceptible to *U*;
- Crystal-field can strongly change position of the band;

Orbitally-induced Peierls effect: Kagome lattice Na₂Ti₃Cl₈: Ti²⁺: d² (S=1)

D. Khomskii, T. Mizokawa, S.S. PRL 127, 049701 (2021) 33

Orbitally-induced Peierls effect: Triangular lattice ReS₂: diamond necklace

Reduction of dimensionality Orbitally-induced Peierls effect

Spinels (3D structure): AB₂O₄

Natural formation of 1D bands due to orbitals...

Orbitally induced Peierls effect: Tetramerization in spinel CuIr₂S₄

J Tetramerization!

Khomskii and Mizokawa, PRL 94, 156402 (2005) **36** **Orbitally induced Peierls effect:** Tetramerization in spinel CuIr₂S₄

Reduction of dimensionality due to orbital degrees of freedom

Other examples

$1D \rightarrow 0D$	chains→dimers	NaTiSi ₂ O ₆ [57, 58]
1D ightarrow 0D	$chains \rightarrow dimens$	TiOC1 [59]
$2D \to 0D$	triangular lattice \rightarrow trimers	$LiVO_2$ [60, 61]
$2D \to 0D$	square lattice \rightarrow dimers	$La_4Ru_2O_{10}$ [62]
$2D \to 0D$	depleted square lattice \rightarrow tetramers	CaV_9O_9 [63, 64]
3D ightarrow 0D	hollandite \rightarrow tetramers	$K_2Cr_8O_{16}$ [65, 66]
3D ightarrow 0D	spinel \rightarrow tetramers/trimers	AlV_2O_4 [67, 68]
3D ightarrow 0D	spinel \rightarrow octamers	$CuIr_2S_4$ [69, 70]
3D ightarrow 1D	$\text{spinel} \rightarrow \text{chains} \rightarrow \text{dimers}$	$MgTi_2O_4$ [70, 71]
3D ightarrow 1D	$perovskite \rightarrow chains$	$KCuF_3$ [72]
$3D \rightarrow 1D$	pyrochlore \rightarrow chains	$Tl_2Ru_2O_7$ [73]

D. Khomskii, S.S. Chem. Rev. 121, 2992 (2021)

Take-home messages

- Orbitals can affect the crystal structure
- Orbitals can **define magnetic** properties
- There are plenty of **orbital-selective effects:** Mott transition, magnetic properties
- Orbitals may **reduce dimensionality** of a magnetic subsystem

