The dielectric function and chemical composition the near surface layer of implanted GaAs with In⁺ ions

¹Joint Institute for Nuclear Research, 141980 Dubna, Russia M. Kulik^{1,2}, D. Kołodyńska³, A. Olejniczak^{1,4} A. Droździel²

²Institute of Physics, Maria Curie-Skłodowska University, Sq.1 Marii Curie-Skłodowskiej, 20-031 Lublin, Poland

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ

³Faculty of Chemistry Maria Curie-Skłodowska University, Sq.2 Marii Curie-Skłodowskiej, 20-031 Lublin, Poland

⁴*Faculty of Chemistry* Nicolaus Copernicus University, St.7 Gagarina, 87-100 Toruń, Poland

Samples and Ion implantation nuclaer study

RRS/NR	invest	ination
		gauon

(100) semi-insulating GaAs single crystals *implanted with* In⁺ ions: E = 250 keV, fluence 2.7×10^{16} cm⁻² E = 100 keV, fluence $3.0 \times 10^{15} \text{ cm}^{-2}$ The current density of ion beam at a collector was 1.0 mA/cm² **UNIMAS** ion implanter Institute of Physics Maria Curie-Skłodowska University The irradiated samples were covered with protective layers of Si_3N_4 having a thicknesses of about 100 nm, before the thermal annealing. Then the samples were annealed isobarically in the flow of argon at 800 C. The annealing time was 2h. **RBS/NR -EG5** at room temperature **Joint Institute for Nuclear Research JINR- Dubna SIMNRA code - study of spectrum RBS/NR**

X-ray photoelectron spectroscopy (XPS) was performed using a Thermo Scientific K Alpha spectrometer equipped with a monochromatic Al Ka radiation source $(E_{AL,Ka}=1486.6 eV)$. JINR DUBNA The analyzer was operated in CAE mode with a pass energy of 20 eV.

Ellipsometric investigation

Ellipsometric measurements SE - were performed at room temperature; variable angle spectroscopic ellipsometer (VASE) of J. A. Woollam working in the configuration of a rotating analyzer; $Y(\lambda)$ and $D(\lambda)$ were measured at three incidence angles: 65°, 70°, 75° and 80° in the range of wavelength l = 250-900 nm (with the step of 1 nm).

