Нейтронная дифракция в конденсированных средах (РГ по научной программе реактора НЕПТУН)

В. А. Турченко ЛНФ ОИЯИ

Основные задачи нейтронной дифракции

- 1. Фазовый состав и количественный фазовый анализ
- 2. Определение типа кристаллической структуры
- 3. Установление параметров элементарной ячейки
- 4. Уточнение занятости кристаллографических позиций
- 5. Уточнение позиций атомов (межионных расстояний,
- углов) и динамические смещения
- 6. Микроструктура (размер зерен/кристаллитов, плотность дислокаций)
- 7. Определение величины напряжений I, II и III рода
- 8. Анализ текстуры
- 9. Определение магнитной структуры и размера доменов

Внешние условия

- 1. Температурный фактор
- 2. Электрическое поле
- 3. Магнитное поле
- 4. Давление
- 5. Газовая атмосфера

<u>Поликристаллические образцы</u> слиток керамика порошок

Монокристаллические образцы

слоистые структуры

тонкие пленки (?)

Электрохимические источники тока

(преобразование энергии химической реакции в электрическую)

Интерметаллиды

ВТСП материалы

Оксидные магнитные полупроводники

Энергетическая революция (увеличение плотности энергии):

- уголь в ~160 раз больше дров;
- нефть в ~2 раза выше угля;
- водород в ~3 раза выше бензина;

Электрохимические источники тока

<u>принцип работы Н₂ топливного элемента</u>

направления использования топливных элементов:1) стационарная энергетика;2) транспортная энергетика;

3) портативная энергетика;

принцип работы Li-ионной батареи

Преимущества:

- запасы H₂;
- результат реакции: выделение H₂O;
- работает, пока подаются окислитель и восстановитель;
- плотность энергии в ~120 раз больше, чем Li батарей;

Преимущества:

- постоянная готовность к эксплуатации;
- широкий диапазон рабочих температур – от -20 до + 50 °C;
- большой эксплуатационный ресурс ~10 лет;

конкуренция плотности энергии и ее стоимости – это инженерная проблема

β-Ni(OH), hexagonal a=3.126(1) Å; c=4.596(1) Å; $V = 5 38.90(1) Å^3; <D > 10 \mu m$ Накопление одиночного спектра ~ 30 минут; Детектор (135° < 2 Θ < 168°; d_{max} = 2.7 Å; $\Delta d/d$ = 0.30%) LaNi₅ hexagonal 111 β-phase a = 5.000(1) Å; c = 4.046(3) Å; во время зарядки **Polaris (ISIS)** $V = 87.60(5) \text{ Å}^3$; $< D > \sim 100 \text{ }\mu\text{m}$ Increasing intensity. (b) 150 Capacity (mAh/g) β-Ni(OH), β-Ni(OD) 110 ntensity (a.u.) Электроды (порошки): 50 Time→ β-Ni(OH)₂ – положительный (~1.2 г) LaNi₅ – отрицательный (~2 г) 010 2.5 2.6 1.6 1.5 1.4 1.3 1.2 2.4 2.1 2.2 2.3 002 d-spacing Voltage (V) (Å) 111 101 Емкость батареи: ~230 mAh 110 2.5 3.0 3.5 1.5 2.0 4.0 4.5 α-phase $Ni(OD)_2$ α-phase (Слева): структурные изменения на d-spacing (Å) положительном отрицательном И на нейтронограмм β -Ni(OH)₂ Модель Перед измерениями нейтронной Ni-MH электродах В аккумуляторе В (черная кривая) и β -Ni(OD)₂ (красная дифракции заместили: зависимости от заряда; и (справа): зависимости кривая). β -Ni(OH)₂ $\rightarrow \beta$ -Ni(OD)₂ напряжения от емкости элемента, измеренного на месте.

Процесс заряда никель-металлогидридного аккумулятора

Biendicho et al., J. Mater. Res. 30(3), (2015) 407-416.

5

Рефлексы а) (101) и б) (110) нейтронной дифракции $Ni(OD)_2$ с различным состоянием заряда. 6

аккумулятора (а) разряженного и (b) полностью заряженного, измеренные на **Polaris (ISIS)**. Biendicho et al., J. Mater. Res. 30(3), (2015) 407–416.

Процесс заряда никель-металлогидридного аккумулятора

Эволюция дифракционных нейтронных спектров от аккумулятора LiFePO₄ в ходе 3-х полных циклов зарядаразряда (период накопления 10 мин), измерено на ФДВР (ИБР-2). Graphite

Процесс заряда/разряда LiFePO₄ аккумулятора

Мода высокой интенсивности (режим real-time):

период накопления одного спектра - 10 мин;

три цикла заряда-разряда - каждый цикл ~20 ч;

I) увеличение расстояний между слоями углерода из-за внедрения лития;

II) незначительное увеличение периода, т.к. литий внедрился в базисные плоскости;

III) образование LiC_6 при заряде по скачкообразному появлению дифракционного пика d~ 3.67 Å. Доля $LiC_6 \sim 50\%$ исходного объема графита, остальное LiC_{12} (обедненные Li).

Процесс заряда/разряда LiFePO₄ аккумулятора

Участки дифракционных спектров LiFePO₄:V $_{\delta}$ с различным содержанием V, где б: 1 - 0%; 2 -0.75%; 3 - 5%.

Мода высокого разрешения ФДВР (ИБР-2):

- идентифицировать структурные фазы и структуру анода/катода в стационарном состоянии;
- количественно проанализировать кинетику ФП в материалах анод-катод;

Зависимости содержания фаз LiC_n для аккумулятора от времени в ходе одного цикла заряда, восстановленные из изменений относительных интенсивностей соответствующих дифракционных пиков: фазы 1 - С, 2 -LiC₂₇, 3 - LiC₁₈, LiC₁₂, 4 - LiC₆.

А.М. Балагуров и др. Успехи химии 83 (12) (2014) 1120.

Особенности

исследования электрохимических источников тока методом нейтронной дифракции

1. Рентгеновское рассеяние практически нечувствительно к наличию атомов водорода в структуре, в то время как ядра водорода и дейтерия являются сильными рассеивателями для нейтронного излучения.

2. Положение ионов Li и H наряду с тяжелыми ионами

3. Изменение фазового состава на обоих электродах

4. Времяпролетная дифракция – «слепок» всей системы в данный момент времени (в отличие от метода с λ-const)

5. Сочетание мод высокого разрешения и высокой интенсивности – более точная информация о состоянии системы + микроструктурные параметры

Электрохимические источники тока

Интерметаллиды

ВТСП материалы

Оксидные магнитные полупроводники

Ионные интерметаллиды

невысокая проводимость электрического тока; повышенная температура плавления; устойчивость к воздействию агрессивных сред; физические свойства определяются особенностями как атомной структуры, так и жесткостью и конфигурацией их химических связей

Металлические интерметаллиды

хорошие проводники электрического тока; более низкая температура плавления (чем ионнные); податливость к пластической деформации; твердость и ударопрочность; податливость механической обработке; хрупкость сплава;

Области применения:

- медицина (импланты, инструменты);
- энергетика;
- авиастроение и космическая промышленность;
- конструкционные материалы в экстремальных условиях;

Сплавы с эффектом памяти формы

Сплавы с эффектом памяти формы (ЭПФ) – снятие остаточной деформации последующим нагревом; Сплавы со сверхупругостью (СУ) – при снятии нагрузки возвращается в исходное состояние даже после деформации в 10...12 %

Сплавы ЭПФ:

NiTi (Уильямом Дж. Бюлером 1960-е г.); TiNiFe; TiNiNb; TiNiHf; CuZnAl; CuAlNi; CuAlBe; AuCd; FeNi; CuMn; CoNi; NiAl и др.

ctuation of

norph without

st processing

[1]

υ= 0.5 Гп

циклов; U= 2: 2.5 и 3 В

• Выс Для практического применения сплава с ЭПФ необходимо знать параметры: • кор

•величину деформации сплава при мартенситных превращениях;

•генерируемое сплавом механическое напряжение или возможное развиваемое усилия

```
для совершение механической работы;
```

•характеристические температуры или интервал начала и конца мартенситных

```
Сте превращений;
```

•скорость протекания мартенситных превращений;

•циклическую прочность или количество циклов срабатывания и т.д.

Стентирование пищевода нитиноловым протезом

Муфта из сплава TiNiFe (обратимая деформация ~9%)

[1] K. Akash et al. J. All. Comp. 720 (2017) 264-271 **11**

^Mfil^Ms ^Asi l^Af

Temperature (°C)

250 275 300

175 200 225

Сплавы с эффектом памяти формы

Volume Fraction of B2 0.0 70 0.0 80 0

0

Ni_{49.9}Ti_{50.1} [1]:

solid symbols: neutron data

solid lines: calculation

B19' NiTi (hea

solid symbols: neutron data ···· calculation (isotropic average

lattice strain (%)

lattice strain (%) 10⁻⁰

-0.2

ND in situ для количественной деформации оценки: решетки, объемной доли фазы и эволюции текстуры при $\Phi\Pi$ B19 \leftrightarrow B2

Измерения ND согласуются С дилатометрическими измерениями И поликристаллической моделью на 30 000 зерен.

Текстура не развивается в отсутствие смещающих напряжений.

Температурная зависимость деформации NiTi: (a) В19 при нагреве и (b) В2 при охлаждении. SMARTS Los Alamos National Laboratory (LANL)

B2 NiTi (cooling)

100 120 temperature (°C)

Эволюция удельной деформации в плоскости решетки остается линейной с температурой и не зависит от межкристаллитных напряжений

- [1] S. Qiu et al. Appl. Phys. Lett. 95 (2009) 141906
- [2] A. V. Shuitcev et al. Scripta Materialia 178 (2020) 67-70.
- [3] A. Shuitcev et al. Intermetallics 125 (2020) 106889.

M n **S** Y **S** Sn₁ **S** Sn₂ **S** Sn₃ BT-7 (NCNR) λ - const

Научный интерес:

1. нетривиальные магнитные и электронные структуры;

2. разнообразие видов магнитного упорядочения в данных соединениях затрудняет понимание физических механизмов, порождающих их физические свойства;

3. привлекает внимание YMn₆Sn₆, т.к. немагнитный Y заметно упрощает изучение магнитной структуры.

[1] R. L. Dally et al. Phys. Rev. B 103 (2021) 094413
[2] N. J. Ghimire et al. Science Advances 6(51) (2020)

Магнитные структуры интерметаллидов YMn₆Sn₆

Обменные взаимодействия вдоль оси [001]:

- J1 ФМ обмен через X–Х–Х-плоскости;
- J2 АФМ обмен через R–Х-плоскости;
- $J3 \Phi M$ обмен в соединениях с R = Dy, Ho, Y;
- J0 ФМ обмен в Мп-плоскостях

Магнитных структуры индуцированные полем Н:

- DS искривленная спираль;
- TCS поперечная коническая спираль;
- FL веерообразная
- FF вынужденная FM

Электрохимические источники тока

Интерметаллиды

ВТСП материалы

Оксидные магнитные полупроводники

1911 г. Нд ($T_{крит} \sim 4.1$ K) Хейке Ка́мерлинг-О́ннес; 1913 г. Рb ($T_{крит} \sim 7.3$ K); 1930 г. Nb ($T_{крит} \sim 9.2$ K); 1974 г. Nb₃Ge ($T_{крит} \sim 23$ K); **Теория БКШ**

1986 г. соединение La_{2-x}Ba_xCuO₄ ($T_{крит} \sim 35$ K) Карл Мюллер и Георг Беднорц – Нобелевская премия (1987); 1987 г. YBa₂Cu₃O_{7-x} (YBCO; $T_{крит} \sim 92$ K); 1993 г. HgBa₂Ca₂Cu₃O_{8+d} (Hg -1223; $T_{крит} \sim 135$ K); (P= 35 ГПа; $T_{крит} \sim 164$ K);

2001 г. MgB₂ ($T_{крит} \sim 39 \text{ K}$) 2008 г. ReFeAsO ($T_{крит} \sim 26 - 55 \text{ K}$) (Re= Sm; Nd; Pr; Ce; La)

2015 г. $H_2S (T_{крит} \sim 203 \text{ K}) при P= 150 \Gamma\Pia;$ 2018 г. La $H_{10} (T_{крит} \sim 260 \text{ K}) при P= 170 \Gamma\Pia;$ $YH_6 (T_{крит} \sim 227 \text{ K}) при P= 237 \Gamma\Pia;$ $YH_9 (T_{крит} \sim 243 \text{ K}) при P= 201 \Gamma\Pia;$ $ThH_{10} (T_{крит} \sim 161 \text{ K}) при P= 174 \Gamma\Pia;$ 2021 г. $(H_2S)_{2-x}(CH_4)_xH_2 (T_{крит} \sim 288 \text{ K}) при P= 267 \Gamma\Pia;$

Температурная зависимость сопротивления $BaFe_2As_2$ ($T_{крит} \approx 142$ К т.к. SG I4/mmm => SG Fmmm). Вставка: спектры ND, измеренные выше и ниже $T_{крит}$.

ВТСП материалы

<u>магнитные моменты Fe ориентированы АФМ</u> вдоль оси *а* и *с* и ФМ вдоль оси b.

Спектры ND (BT1 (NIST; $\lambda = 2.079 \text{ Å}$)):

a) 175 K – SG I4/mmm;
b) 5 K – SG Fmmm.
Магнитные пики при T= 5 К
выделены на вставке к (b)

Q. Huang et al. Phys. Rev. Lett. 101 (2008) 257003

16

ВТСП материалы

(111)

(110)

(100)

2001 г. $MgB_2~(T_{_{\rm KPИT}}\sim 39~{\rm K})$

АО «ВНИИНМ» патент на получение композиционного провода на основе (MgB₂) **(2018):**

- силовые электрические кабели;
- сверхпроводящие генераторы ветряных энергоустаново
- магниты токамака в термоядерных реакторах;

Провода из Mg¹¹B₂ :

- критическая плотность тока (J_c) и критического поля $(B_{c2}) \approx$ характеристикам сверхпроводника NbTi;
- наведенная радиоактивность ниже, чем NbTi и Nb₃Sn;
- более высокая эффективность криогенных реакторных систем;
- более высокая критическая температура (Т_{крит});

Проблема микроскопических повреждений :

электромагнитные силы (Лоренца);

термические напряжениями (из-за охлаждения до криогенных температур);

остаточные напряжения (в процессе производства).

Микроструктура поперечного сечения

(200)

Полюсные фигуры фаз в проволоке Mg¹¹B₂,

J. Hyunseock et al. RSC Adv. 8 (2018) 39455-39462 термически обработанной при 700 °С.

Электрохимические источники тока

Интерметаллиды

ВТСП материалы

Оксидные магнитные полупроводники

ферриты-шпинели $MeFe_2O_4$ (SG Fd3m, Z = 8), где Me — двухвалентный металл: Co, Mn, Mn, Cu, Zn и др.; ферриты-гранаты $Me_3Fe_5O_{12}$ (SG Ia3d, Z = 8), где Me — редкоземельный элемент Sm, Eu, Lu, Y и др.; гексаферриты $MeFe_{12}O_{19}$ (SG P6₃/mmc), где Me = Pb, Sr, Ba, La и др.; ортоферриты MeFeO₃ (SG Pcmn, Z = 4), где Me — редкоземельный элемент. манганиты $AMnO_3$, где A = La, Ca, Ba, Sr u др.; ферробораты RFe₃(BO₃)₄ и др.

Уникальные физические свойства:

Спин-флоп и спин-флип переходы в АФМ;

магнитные высокочастотные (ВЧ и СВЧ материалы);

магнитотвердые (постоянные магниты);

Термочувствительные свойства:

позисторы (ВаТіО₃) и

термисторы (двойные и тройные системы окислов);

цилиндрические магнитные домены (ферриты):

запоминающие устройства и магнитооптические приборы (ферриты с ЦМД); мультиферроидные свойства; магнитоэлектрические свойства;

магнитокалорические свойства;

Важная проблема:

повторяемость или воспроизведение свойств материалов.

Оксидные магнитные полупроводники

Керамика La_{0.5}Pr_{0.2}Pb_{0.25}Sr_{0.05}MnO₃

Оксидные магнитные полупроводники

Зависимости среднего магнитного момента в узле Co2 для $Ca_3Co_{2-x}Fe_xO_6$ (x< 0.4). На вставке: линейная аппроксимация T_N .

[1] R. Das et al. J. All. Comp. 851 (2021) 156897

Оксидные магнитные полупроводники

Экстремальные условия: высокие давления

Зонд **Pluto New Horizons** обнаружил смесь льдов N₂-CO₂-CH₄ на поверхности **Плутона** и <u>гидраты аммиака</u> на его спутнике **Хароне** [1].

Исходное ND₄DCO₃ (<u>SG Pccn</u>) a= 7.25260(4) Å; b= 10.69230(5) Å; c= 8.76642(3) Å; V= 679.809(4) Å³

I ФП при T= 295 К и P= от 2.26(8) до 2.73(8) ГПа <u>SG Pbc2</u>₁, a = 3.39859 Å; b = 10.58048 Å; c = 8.25134 Å; V = 296.71 Å³

Влияние <u>экстремальных условий</u> на структурные особенности **бикарбоната аммония** NH₄HCO₃ // ND₄DCO₃ исследовано на дифрактометре PEARL (ISIS).

красные – свинец (для определения давления); остальные метки от наковальни и камеры давления (глинозем (синий) и диоксид циркония (зеленый)).

Кристаллическая структура фазы II (SG Pbc2₁)

[1] W.M. Grundy et al. Surface compositions across Pluto and Charon. Science. 351 (2016) aad91891.[2] Ch. Howard Thesis PhD 2019

22

Дифракция монокристаллов α- карбамата аммония

Монокристаллический дифрактометр SXD (ISIS)

[1] Ch. Howard Thesis PhD 2019

 $[NH_4]^+[NH_2CO_2]^-$

Исследования магнетита (Fe₃O₄) при высоких давлениях

[1] D. P. Kozlenko et al. Scientific Reports 9 (2019) 4464

24

Pressure (GPa)

Развитие оборудования окружения образца

- [4] R. Boehler et al. High Pressure Research V.33(3)(2013) 546–554.
- [5] I.N. Goncharenko High Press. Res. 24(1) (2004) 193–204

26

Тестирование наковален

Исследования в условиях реального технологического применения

Эволюция части нейтронограммы порошка $(Fe_{0.2}Mn_{0.8})_2O_3$, нагретого в атмосфере СО при 848°С. Polaris (ISIS) Воздушный резервуар твердый носитель кислорода (удерживающий СО₂ и/или H₂O)

Топливный реактор

В интервале температур от <u>1000 до 700 °C</u>:

M_2O_3 (биксбиит B) $\leftrightarrow M_3O_4$ (S) $\leftrightarrow MO$ (R),

где $\mathbf{M} = (Fe_{0.2}Mn_{0.8}); \mathbf{S} - шпинель; \mathbf{R} - каменная соль$

механизм разъединения и поглощения кислорода биксбиитом (Fe,Mn)₂O₃;
 разработка метода, который позволит эффективно улавливать CO₂ при сжигании топлива на электростанции;

3) удешевление энергозатратного и дорогостоящего газоразделения.

СаС₂О₄ * H₂O (оксалат кальция моногидрат)

I фазовый переход (t = 183 0 C) : (CaC₂O₄ * H₂O → CaC₂O₄ + H₂O); II фазовый переход (t = 540 0 C) : (CaC₂O₄ → CaCO₃ + CO)

[1] Norberg et al. / Cryst. Eng. Comm. 18, (2016) 5537.

[2] A. M. Balagurov, A. I. Beskrovnyy et al. // J. Surf. Inv. X-ray Synchr. Neutron Techniq. V.10(3) (2016) P.467.

Дифракция монокристаллов

Планируется: на монокристаллическом времяпролетном (TOF) Лауэ дифрактометре PIONEER (Oak Ridge National Laboratory) будет возможно проведение измерений на образцах V~0.001 мм³ и менее.

Образцы аналогичного объема будет возможно также измерять на дифрактометре MAGiC European Spallation Source (ESS).

Детекторная система

PIONEER ($\Omega \sim 4$ cp.)

Предполагается:

- •Полный набор для структурных уточнений возможен по ~10 ориентациям монокристалла.
- •Скорость набора данных для кристалла (V~ 0.001 мм³) составит десятки минут на кадр и несколько часов на полный набор данных.

<= хорошая статистика при одноимпульсном воздействии т.е. **PIONEER** будет эффективен для экспериментов с импульсным полем или исследований с временным разрешением даже с кристаллами менее миллиметра.

[1] Y. Liu et al. Rev. Sci. Instrum. 93 (2022) 073901

Исследование кристаллической структуры тонких пленок

5µm

тонкие пленки выращенные методом: импульсного лазерного осаждения (PLD); молекулярно-лучевой эпитаксии (MBE).

Модель срезов вдоль направления L (* и # магнитной и ядерной составляющей пики пленки LaMnO₃, соответственно. Остальные видимые пики от подложки Sr_2IrO_4).

Будет возможно:

• количественно изучать ядерную и магнитную структуры ультратонких пленок толщиной до 10 нм и менее;

•исследовать состояния поверхности или границы раздела.

Данные для расчета взяты из [2] Е. J. Moon et al. Phys. Rev. В 95 (2017) 155135 30

Модель рассеяния в обратном пространстве, при ориентации образца в плоскости рассеяния H0L.

Планируемое время экспозиции:

~ 24 ч на образец

[1] Y. Liu et al. Rev. Sci. Instrum. 93 (2022) 073901

Сегнетоэлектрические материалы

XMaS ESRF-EBS (Extremely Brilliant Source)

Заключение: перспективы

Универсальность дифрактометра

Спецификация дифрактометра

Оборудование окружения образца

Исследование более сложных систем и процессов

Уменьшение влияния человеческого фактора

Спасибо за внимание!