# Перспективы малоуглового рассеяния нейтронов на импульсном источнике DNS-IV

Авдеев М.В. ЛНФ ОИЯИ

•Малоугловые дифрактометры: основные принципы и организация работы

• МУРН на ИБР-2

♦Современные дифрактометры TOF-MУPH : ISIS, SNS, J-SNS

• Тенденции развития: ESS

\* МУРН на DNS-IV: базовый набор и перспективы

# Специализация МУРН

- I. Сложные жидкости (растворы ПАВ, полимеров, ЖК, золи и суспензии наночастиц)
- **II.** Биологические макромолекулы и мембраны
- III. Аморфные вещества (углерод, кремний, твердые полимеры, стекла, пены)
- **IV. Поликристаллические и композиционные материалы**
- **V. Магнитные коллоиды**
- VI. Длиннопериодические и макромолекулярные структуры

VII. Субмикронные и микронные неоднородности (USANS, SESANS)

## Типичная схема установки МУРН



## Оптимальная конфигурация



#### Типичные характеристики

- **Q-разрешение: 5 30 %**,
- **Q-диапазон: 0.01 5 нм<sup>-1</sup>,**
- Динамический диапазон: 5 100
- Время экспозиции на кривую: 1 100 мин
- Наличие поляризатора

Широкие возможности системы окружения образца (T, p, H) в непредельных интервалах.

Автоматическое измерение наборов образцов (5 – 30)

Наличие ПЧД (50×50 - 100×100 см, разрешение 0.5 – 1 см)

KWS-1 (MLZ, Garching): Principal layout



- Neutron guide NL3
- ② High-speed chopper
  - ∆λ/λ=1%
- ③ Changeable polarisers
- ④ Spin flipper
- ⑤ Neutron guide sections 18 x 1m

- 6 MgF<sub>2</sub> focussing lenses
- ⑦ Sample position with magnet
- ⑧ <sup>3</sup>He spin filter
  - with reversable polarisation (to be implemented)
- Anger-type scintillation detector

KWS-1 (MLZ, Garching): Technical data

#### **Overall performance**

•Q =  $0.0007 - 0.5 \text{ Å}^{-1}$ •Maximal flux:  $1.5 \cdot 10^8 \text{ n cm}^{-2} \text{ s}^{-1}$ •Typical flux:  $8 \cdot 10^6 \text{ n cm}^{-2} \text{ s}^{-1}$  (collimation 8 m, aperture 30 x 30 mm<sup>2</sup>,  $\lambda = 7 \text{ Å}$ )

#### **Velocity selector**

•Dornier, FWHM 10%, λ = 4.5 Å – 12 Å, 20 Å

#### Chopper

•For TOF-wavelength analysis, FWHM 1%

#### Polariser

•Cavity with V-shaped supermirror, all wavelengths

•Polarisation > 90%, typical 95%

**Spin-flipper** •Radio-Frequency (efficiency > 99.8%)

## **Neutron lenses**

•MgF<sub>2</sub>, diameter 50 mm, curvature 20 mm •Packs with 4, 6, 16 lenses Active apertures •2 m, 4 m, 8 m, 14 m, 20 m

Aperture sizes •Rectangular 1 x 1 mm<sup>2</sup> – 50 x 50 mm<sup>2</sup>

Sample aperture •Rectangular 1 x 1 mm<sup>2</sup> – 50 x 50 mm<sup>2</sup>

Sample stage •Hexapod, resolution better than 0.01°, 0.01 mm

#### Detector

•Detection range: continuous 1.5 m – 20 m •<sup>6</sup>Li-Scintillator 1 mm thickness + photomultiplier •Efficiency >95% •Spatial resolution 5.3 x 5.3 mm<sup>2</sup>, •128 x 128 channels •Max. count rate 0.6 MHz  $(T_{dead} = 0.64 \ \mu s)$ 

## KWS-1 (MLZ, Garching): Sample environment

- Rheometer shear sandwich
- Rheowis-fluid rheometer (max. shear rate 10000 s<sup>-1</sup>)
- Anton-Paar fluid rheometer
- Stopped flow cell
- Sample holders: 9 horizontal x 3 vertical (temperature controlled) for standard Hellma cells 404-QX and 110-QX
- Oil & water thermostats (range  $-40 +250^{\circ}$ C), electric thermostat (RT  $-200^{\circ}$ C)
- 8-positions thermostated (Peltier) sample holder (-40°C ... +150°C)
- Magnet (horizontal, vertical)
- Cryostat with sapphire windows
- High temperature furnace
- Pressure cells (500 bar, 2000 bar, 5000 bar)

## **KWS-1** (MLZ, Garching)







# KWS-1 (MLZ, Garching)

## **Cobalt ferrite in SiO**<sub>2</sub>



D33 (ILL, Grenoble) Massive dynamic q-range small-angle diffractometer



## D33 (ILL, Grenoble) Massive dynamic q-range small-angle diffractometer

| Time-of-Flight (TOF) Mode         |                                                                  | Detectors                      |                                          |  |
|-----------------------------------|------------------------------------------------------------------|--------------------------------|------------------------------------------|--|
| 4-chopper system<br>(Astrium)     |                                                                  | Sample - Detector<br>distances | 1.2 12.8 m                               |  |
| Wavelength                        | $4.5 < \lambda/\text{\AA} < \!\!14$ Å and 20 Å                   |                                |                                          |  |
| cut-offs                          |                                                                  | Det                            | etector 1 (rear)                         |  |
| Wavelength resolutions            | $\Delta\lambda/\lambda = 2$ % to 26 % (depending on chopper pair | Single panel<br>monoblock      | 640 x 640 mm                             |  |
|                                   | & detector distance)                                             | Pixel size                     | 5 x 5 mm <sup>2</sup> (128 x 128 pixels) |  |
| Dynamic q-range                   | $0.01 - 10 \text{ nm}^{-1}$ ,<br>$q_{max}/q_{min}$ up to 1000    | Maximum count<br>rate          | 4 MHz (global) ; 3 kHz/pixel<br>(local)  |  |
| C                                 | ollimation                                                       | Det                            | ector 2 (front)                          |  |
| 4 movable guide sections          | 2.5 m,<br>cross-section 30 x 30 mm                               | 4-panel<br>monoblock           | 160 x 640 mm each panel                  |  |
| Source-to-sample<br>distances (m) | 2.8, 5.3, 7.8, 10.3, 12.8                                        | Pixel size                     | 5 x 5 mm <sup>2</sup> (32 x 128 pixels)  |  |
| Apertures                         | diameters: 5, 10, 20, 30 mm                                      | Maximum count<br>rate          | 4 MHz (global) ;<br>3 kHz/pixel (local)  |  |

D33 (ILL, Grenoble) Massive dynamic q-range small-angle diffractometer



#### D33 (ILL, Grenoble) Massive dynamic q-range small-angle diffractometer

|                                                              | Sample area                                                                                  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Maximum flux at sample (for $\Delta\lambda/\lambda = 10\%$ ) | 4.1x10 <sup>7</sup> n cm <sup>-2</sup> s <sup>-1</sup>                                       |
| Brightness (flux / unit<br>solid angle)                      | 3.57x10 <sup>11</sup> n cm <sup>-2</sup> s <sup>-1</sup> strd <sup>-1</sup>                  |
| Maximum sample<br>dimensions                                 | 15 mm x 15 mm                                                                                |
| Sample environments                                          | Sample changer, Electromagnet,<br>Cryostat, Cryomagnet, Furnace,<br>Stopped-flow, Shear cell |

Optional: Beam polarization and <sup>3</sup>He spin analysis









# Организация исследований МУРН

### MLZ, Garching

KWS-1 high resolution SANS diffractometer with full polarization analysis

KWS-2 high flux SANS diffractometer (non-polarized beam)

KWS-3 is a very small angle neutron scattering (VSANS) instrument



# Организация исследований МУРН

## ORNL, Oak-Ridge

- GP-SANS General-Purpose Small-Angle Neutron Scattering Diffractometer
- BIO-SANS Biological Small-Angle Neutron Scattering Instrument
- EQ-SANS Extended Q-Range Small-Angle Neutron Scattering Diffractometer

## ANSTO, Sydney

- Quokka Small-angle neutron-scattering instrument
  - Bilby Small-angle neutron-scattering instrument (TOF option) (built due to strong excess of proposals)

# **TOF-SANS** at pulsed neutron sources (10 instruments)

ISIS (3) LOQ – standard SANS (non-pol) SANS2d – extended SANS (non-pol) Larmor – SESANS

ISIS (1) ZOOM – VSANS (pol)

SNS (2) EQ-SANS – extended SANS (non-pol) USANS

LANSCE (0)

J-PARC (1) TAIKAN – SANS and WANS (pol)

IBR-2 (1) YuMO – standard SANS (non-pol)

ESS (2) SKADI – General Purpose SANS (pol) LoKI – Broadband SANS (non-pol)

# **Spectrometers at the IBR-2 reactor**



# YuMO small-angle diffractometer



- 1 power modulator;
- 2 reactor core with moderator;
- **3** background chopper;
- 4 first aperture (pin-hole);
- 5 vacuum tube;
- 6 second aperture (pin-hole);
- 7 thermostate;
- 8 sample table;
- 9 goniometer;
- 10-11 V-standards;
- **12 ring-wire detector;**
- 13 position-sensitve detector ;
- 14 direct beam detector.

# **YuMO characteristics**

| Neutron flux at sample place                               | 1-4×10 <sup>7</sup> cm <sup>-2</sup> s <sup>-1</sup>                         |  |  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| Neutron wavelength band                                    | 0.5 – 8 Å                                                                    |  |  |  |
| q-range                                                    | 0.007 − 0.5 Å <sup>-1</sup>                                                  |  |  |  |
| q-resolution                                               | 5 – 20 %                                                                     |  |  |  |
| Dynamic q-range (q <sub>max</sub> /q <sub>min</sub> in one | up to 100                                                                    |  |  |  |
| measurement)                                               |                                                                              |  |  |  |
| Beam size at sample place                                  | Ø 14 mm                                                                      |  |  |  |
| Detectors                                                  | Two-detector system, He <sup>3</sup> , ring wire detectors,                  |  |  |  |
|                                                            | no-radial sensitivity                                                        |  |  |  |
| Detector of direct beam                                    | <sup>6</sup> Li-convertor                                                    |  |  |  |
| Detector PSD                                               | PSD, <sup>3</sup> He, 60×60 cm <sup>2</sup> , resolution 5×5 mm <sup>2</sup> |  |  |  |
| Number of samples in                                       | 25                                                                           |  |  |  |
| automatic cartridge                                        |                                                                              |  |  |  |
| Temperature range                                          | +4°C ÷ + 70°C                                                                |  |  |  |
|                                                            | (standard quartz cells)                                                      |  |  |  |
|                                                            | -20°C ÷ + 130°C                                                              |  |  |  |
|                                                            | (requires special sample holder)                                             |  |  |  |
| Sample environment                                         | Electromagnet 2.5 T, (p, V, T)-cell                                          |  |  |  |

# Effect of electric field on the structure of ferrofluids

(FLNP JINR - IEP SAS - KNU - JCNS)



0.06 0.08

0.04

 $q (nm^{-1})$ 

0.1

10 -

1

0.01

200

0.02



Anisotropy on 2D scattering – nanoparticle's chain formation



Rajnak M., Petrenko V.I., Avdeev M.V., et al, Applied Physics Letters, 2015, V. 107, 073108.

#### CONCEPT OF SMALL-ANGLE DIFFRACTOMETER IN CLASSICAL CONFIGURATION AT THE CRYOGENIC MODERATOR OF IBR-2 REACTOR



M.V.Avdeev, R.A.Eremin, V.I.Bodnarchuk, I.V.Gapon, V.I.Petrenko, R. Erhan, A.V. Churakov, D.P.Kozlenko, J. Surf. Investigation. 12(4) (2018) 638-644.

#### **Bender Tests at 10A Beamline**



L = 2 m, R = 14.3 m, N = 20 (m = 2)

#### Total flux measurements (monitor PSD)

0,1

ò

| Temperature of<br>moderator |        | 300 K  |
|-----------------------------|--------|--------|
| Before bender               | >1.0e8 | ~5.0e7 |
| After bender                | ~5.0e7 | ~8.0e6 |

200

400

600

TOF

800

1000

 $\begin{array}{l} 30 \ K-working \ mode \ (flux \ at \ sample > 10^6 \ cm^{-2} \ s^{-1}) \\ 300 \ K-mode \ for \ high-scattering \ systems \\ (flux \ at \ sample > 10^5 \ cm^{-2} \ s^{-1}) \end{array}$ 

#### **Total flux calculations** (flux density on moderator 10<sup>12</sup> cm<sup>-2</sup> s<sup>-1</sup>)

| Temperature of<br>moderator                     |       | 100 K | 300 K |
|-------------------------------------------------|-------|-------|-------|
| Before bender                                   | 1.0e9 | 4.3e8 | 1.8e8 |
| After bender                                    | 3.9e8 | 8.5e7 | 1.4e7 |
| Sample position<br>(collimation length 1 м)     | 2.3e8 | 5.6e7 | 1.0e7 |
| Sample position<br>(collimation length 10<br>M) | 7.4e6 | 2.7e6 | 7.2e5 |

# ISIS TS2 v = 10 Hz, $\Delta t = < 50$ µs

Sans2d Time-of-flight Small-Angle Neutron Scattering instrument (**TS2**)

•Wide Q-range ( $0.02 < Q \text{ nm}^{-1} < 20$ ); most is accessible with one instrument configuration.

•Five 2 m guide sections with variable collimation apertures.

•Two moveable 1 m<sup>2</sup> detectors giving the most detector area on any SANS instrument in the world and almost 77,000 pixels.

•High-flux at sample (3-10 times <u>LOQ</u> on TS1, depending on Q-range).

•Small sample size/volume (<15 mm diameter or only 0.3-3 ml).

PSD



# J-PARC/J-SNS pulsed neutron source v = 25 Hz

### TAIKAN Small and Wide Angle Neutron Scattering Instrument



| Moderator                                           | Coupled hydrogen moderator                                                                  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------|
| Neutron<br>wavelength band                          | 0.05-0.8 nm (unpolarized neutron)                                                           |
| Q-range                                             | $5 \times 10^{-2}$ -100 nm <sup>-1</sup> (unpolarized neutron)                              |
| Beam size                                           | 10 mm×10 mm (Typical)                                                                       |
| Auxiliary<br>equipment and<br>sample<br>environment | Sample changer<br>(10 samples, T = -25 +125° C),<br>4K cryostat, 1Tesla electromagnet, etc. |



# Поляризованные нейтроны



#### **Transmission polarizer: S-shaped**



#### Transmission <sup>3</sup>He analyzer



unpolarized incoming neutrons



polarized <sup>3</sup>He



polarized outgoing neutrons





# ESS pulsed neutron sources, v = 14 Hz, $\Delta t_0$ = 2860 µs



# **SKADI SANS diffractometer, ESS**



# **SoNDE Detector, ESS**













Hamamatsu H8500 multianode photomultiplier with high voltage cable (picture from Hamamatsu). The device has got a sensitive area of 89% and pixel sizes of about 6 mm x 6 mm

Position reconstruction by Anger method based on photomultiplier light sensors

Project (No. 654124) is funded by the Horizon 2020 Framework Programme of the European Union.

# Sample Environment Systems for Fluids Including Gases, Liquids and Complex Fluids (FLUCO)

- Temperature, spanning the approximate range of 223 473K;
- Relative humidity, using H<sub>2</sub>O, D<sub>2</sub>O or solvents including organic solvent;
- Physical forces, including shear, torque, and stretch viscosity, including dynamic and kinematic, and fluidity friction;
- Small magnetic fields, up to 1T. For high magnetic fields, please see the Temperatures and Fields platform;
- Electrical properties, including potentiostat measurements.

# **LoKI SANS diffractometer, ESS**



 $\begin{array}{l} \text{L1}_{\text{max}} = 10\text{m} \\ \text{L2}_{\text{max}} = 10\text{m} \\ \text{Repetition rate} = 14\text{Hz or 7Hz} \\ \delta\lambda_{\text{max}} = 10\text{\AA at 14Hz} \end{array}$ 

Max flux on sample ~1x10<sup>9</sup> n/cm<sup>2</sup>/s

2x line-of-sight closure

**Dynamic q-range** > 1000

## Boron-10 "Lined tube" detector system



## Costs 12 MEu

## "Window frame" detector system



# **Basic parameters of NEPTUN (Booklet, 2018), SNS and ESS**

|    |                              | <u>NEPTUN</u>                 | <u>SNS</u>                   | <u>ESS</u>                |
|----|------------------------------|-------------------------------|------------------------------|---------------------------|
| 1. | Time-average flux density:   | $(0.5 \div 12) \cdot 10^{14}$ | <b>0.1</b> ·10 <sup>14</sup> | <b>3·10</b> <sup>14</sup> |
| 2. | Half-width of fast neutrons: | (20 ÷ 200) μs                 | (20 ÷ 50) μs                 | 2860 µs                   |
| 3. | Pulse repetition rate:       | (10 ÷ 30) Hz                  | 60 Hz                        | 14 Hz                     |
| 4. | Time-average power:          | (5 ÷ 10) MW                   | <b>1 MW</b>                  | 5 MW                      |
| 5. | <b>Background power:</b>     | 3.2 %                         | <1%                          | <1%                       |
| 6. | Number of beam ports:        | 20 – 32                       | 22                           | 42                        |

# **Set of SANS instruments**

| No. | Instrument      | Main issue                                                                                                                                                                                                                            | Moderator |
|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1   | General purpose | high resolution, $q_{min} = 10^{-4} \text{ Å}^{-1}$<br>polarized neutrons,<br>wide angle analyzer,<br>two PSD 1 × 1 m, 5 × 5 mm,<br>extended sample environment<br>( <u>combinations with other techniques</u> ,<br>operando studies) | 30 K      |
| 2   | Real time       | medium resolution, $q_{min} = 10^{-3} \text{ Å}^{-1}$<br>non-polarized<br>PSD 0.64 × 0.64 m, 5 × 5 mm                                                                                                                                 | 30 K      |
| 3   | Micro-samples   | medium resolution, $q_{min} = 10^{-3} \text{ Å}^{-1}$<br>focusing devices,<br>non-polarized<br>PSD 0.64 × 0.64 m, 5 × 5 mm                                                                                                            | 30 K      |

# **NEPTUN: requirements**

| 1. | Time-average flux density:   | $(0.5 \div 12) \cdot 10^{14}$ | $\rightarrow$ | $\Phi_0 = 5 \cdot 10^{14} \text{ n/cm}^2/\text{s}$ |
|----|------------------------------|-------------------------------|---------------|----------------------------------------------------|
| 2. | Half-width of fast neutrons: | $(20 \div 200) \ \mu s$       | $\rightarrow$ | $\Delta t_0 = 200 \ \mu s$                         |
| 3. | Pulse repetition rate:       | (10 ÷ 30) Hz                  | $\rightarrow$ | v = 10 Hz                                          |
| 4. | Moderators (at least three): | VC, C, Th                     | $\rightarrow$ | very cold (~30 K)                                  |
| 5. | Background power:            | 3.2 %                         |               | problem for HQ instruments                         |

# Выводы

- 1. Современная и будущая тенденция в создании установок SANS определяется большим пользовательским спросом: совмещение на одном источнике установок широкого профиля (с достаточно хорошими характеристиками) со специализированными установками (in situ, широкий динамический диапазон, микрообразцы, специальные задачи).
- 2. На сегодняшний день накоплен огромный опыт в создании установок SANS. Дальнейшее усовершенствование данного вида установок, включая детекторные системы видится крайне затратным.
- 3. На DNS-IV могут быть реализован «стандартный» набор установок SANS по совокупности основных характеристик (интенсивности, разрешению, диапазону переданных импульсов), сравнимых с установками SNS, J-SNS и ESS. Проблемой для конкуренции будет являться наличие TOF фона из фоновой мощности источника.
- 4. Основной линией усовершенствования и повышения конкурентоспособности установок SANS – развитие окружения образца нового поколения:
  - Совмещение с дополняющими методами
  - Специализированные системы под классы практических задач (катализ, электрохимия, пищевая продукция, материаловедение, радиоактивные материалы и т.п.)