Дифрактометры на реакторе Нептун

Рабочая группа: Балагуров А.М., Бескровный А.И., Бобриков И.А., Бокучава Г.Д., Васин Р.Н., Кичанов С.Е., Лукин Е.В., Лычагина Т.А., Николаев Д.И., Сумников С.В., Турченко В.А.

ЛНФ, ОИЯИ

25.10.2022 г.

Дифракция нейтронов на реакторе Нептун

• Дифрактометры и мировые тенденции в их развитии

•Конструкция и характеристики дифрактометров первой

очереди для нового источника нейтронов ЛНФ ОИЯИ

«НЕПТУН»

Специализация нейтронных дифрактометров

I. Эксперимент с монокристаллом 2D ПЧД, $\Delta x < 3 \text{ мм} \rightarrow 4\pi \Pi 4 \square$

II. Структурный эксперимент на поликристалле высокое разрешение, *∆d/d* ≈ 0.002, широкоапертурный ПЧД

III. Магнитная структура (моно- или поликристалл) среднее разрешение, большие (~15 Å) *d*_{hkl}

IV. *In Situ, Real Time* эксперимент высокая светосила (~10⁸ н/с), широкий интервал *d*_{hkl}

V. Высокое давление, микрообразцы высокая светосила, низкий фон

VI. Длиннопериодные и макромолекулярные структуры среднее разрешение, очень большие (~60 Å) *d*_{hkl}

VII. Локальные искажения структуры большие переданные импульсы, $Q_{max} \sim 40$ Å⁻¹

VIII. Микроструктура материалов и изделий (напряжения, текстура) высокое разрешение, *∆d/d* ≈ 0.004, высокая светосила

TOF-diffractometers at pulsed neutron sources (33 instruments)

I. ISIS (7)

ENGIN-X – engineering GEM – powder, HR + HI HRPD – powder, HR PEARL – high-pressure POLARIS – powder, HI SXD – single-crystal WISH – magnetic

II. SNS (6) MANDI – macromolecular NOMAD – nanoscale POWGEN – powder, HR, HR + HI SNAP – high-pressure TOPAZ – single-crystal VULCAN – engineering

III. LANSCE (2) HIPPO – engineering SMARTS – high-pressure

IV. J-PARC (6)

iBIX - macromolecular iMATERIA - powder, HR + HI PLANET – high-pressure SENJU - single-crystal sHRPD – powder, HR TAKUMI - engineering

V. IBR-2 (7)

DN-6 – high-pressure DN-12 – high-pressure FSD – engineering HRFD - powder, HR, HR + HI RTD - powder, HI EPSILON – stress SKAT - texture

VI. ESS (5) DREAM – powder, HR, HR + HI HEIMDAL - hybrid MAGiG – polarized, single crystal NMX – macromolecular BEER – engineering

Materials engineering diffractometer BEER, ESS (Diffraction + SANS + Imaging, L_1 = 157 m, $\Delta\lambda \approx 1.7$ Å, $\lambda_{min} \approx 0.6$ Å)

BEER feature: bispectral switch (cold + thermal neutrons)

<u>BEER choppers</u>: (pulse shaping + pulse selection + frame overlap) = 11 choppers

BEER costing (kEu): Detector = 7011, Optic = 3990, Choppers = 1550, Shielding = 700 ...

<u>Total</u> : Min = 19 701; Max = 21 301

Нейтронный дифрактометр: основные параметры

- Поток на образце
- Разрешение
- Телесный угол детектора
- Интервал по dhkl
- Уровень фона
- •

Разрешение ТОГ дифрактометра

Основные параметры источников Нептун, ИБР-2 и SNS, ESS

	Нептун	ИБР-2	SNS	ESS
Средняя плотность потока нейтронов	1x10 ¹⁴	8x10 ¹²	$1 x 10^{14}$	3x10 ¹⁴
Длительность импульса быстрых нейтронов	200 мкс	≈200мкс	20-50 мкс	2860 мкс
Частота импульсов	10 Гц	5 Гц	60 Гц	14 Гц
Уровень фона	2%	5%	<1%	<1%
Число пучков	32	18	22	42

Дифракция на импульсном реакторе НЕПТУН

I ЭТАП:

1. Дифрактометр высокого разрешения (DSHR) Структурный, порошковый (RTOF)

2. Дифрактометр для материаловедения (MSD) (+ Росатом: необлученные материалы и изделия) Порошковый (RTOF), остаточные напряжения, *in situ* исследования при нагрузке/температуре

3. Дифрактометр высокой светосилы (DSHI) Структурный, порошковый (RTOF), режим 1 вспышки

4. Дифрактометр для исследований при высоких давлениях (DHP) Структурный, порошковый (TOF), для микрообразцов под высоком давлением

5. Текстурный дифрактометр для конструкционных материалов (TDSM) Для небольших образцов (~1 см) мелкозернистых материалов (RTOF)

6. Текстурный дифрактометр высокого разрешения (DTHR) Для крупных образцов (до 5 см) крупнозернистых материалов (TOF)

Дифрактометр высокого разрешения (DSHR)

- 1 замедлитель
- 2 прерыватель Фурье
- 3 нейтроновод
- 4 детектор обратного рассеяния
- 5 место образца
- 6 детектор при угле рассеяния 90°
- $7-\Pi \Psi Д$ детектор при угле рассеяния 30°

Максимальное разрешение по d_{hkl} :

$2\theta = 170^{\circ}, d = 2 \text{ Å}$	0.0003
$2\theta = 150^{\circ}, d = 2 \text{ Å}$	0.0010
$2\theta = 90^{\circ}, d = 2 \text{ Å}$	0.0040
$2\theta = 30^\circ, d = 2$ Å	0.01

Поток на образце:

с фурье-прерывателем2x107 н/см²/сбез фурье-прерывателя108 н/см²/с

Интервал длин волн0.9 - 8 ÅСечение пучка на образце10x50 ммРасстояние замедлитель-образец45 мРасстояние прерыватель-образец30 мДетектор обратного рассеяниясцинтилляторДетектор при $2\theta = 90^{\circ}$ сцинтилляторДетектор при $2\theta = 30^{\circ}$ 3 Не, 2D ПЧД

Замедлители

Симуляция нейтронного спектра на ESS

Интервал длин волн Температура в пучке нейтронов Поток на образце

0.9 – 8 Å 300К+≈60К **10⁸ н/см²/с**

Измеренный спектр на ФДВР ИБР2

Замедлители

Прерыватель Фурье

Фурье прерыватель на ФДВР

Фурье прерыватель на ФСД

- Макс. скорость вращения

- Материал статора/ротора
- Диаметр ротора (диска)
- Тип щелей

6000 – 9000 об/мин высокопроч. Al сплав

 ≈ 540 мм

прорези в материале / сплошной диск

- Источников пикап сигнала
- Число щелей
- Поглощающий материал
- Диапазон ускорений

оптический энкодер / лазер 1024 ¹⁰B₄C / Gd 0.1 ÷ 300 об/мин/сек

Прерыватель Фурье

Фурье прерыватель на ФСД

оптический энкодер / лазер 1024 ¹⁰B₄C / Gd

1.5

2.0

0.1 ÷ 300 об/мин/сек

- Макс. скорость вращения
- Материал статора/ротора
- Диаметр ротора (диска)
- Тип щелей

6000 – 9000 об/мин высокопроч. Аl сплав ≈ 540 мм прорези в материале /

сплошной диск

Фурье прерыватель на ФДВР

- Источников пикап сигнала
 - Число щелей
 - Поглощающий материал
 - Диапазон ускорений

Нейтроновод

Схема нейтроновода ФСД

Схема нейтроновода ФДВР

Основные параметры:

Поток на образце:

с фурье-прерывателем без фурье-прерывателя

2·10⁷ н/см²/с 10⁸ н/см²/с Минимальный фон на образце поглощение быстрых нейтронов и гамма лучей

Детекторная система

кольцевой, с фокусировкой телесный угол детектора $\Omega_d \approx 2.0$ sr,

Высоко температурная печь И

нагреватели и экраны ванадиевая фольга температурный диапазон от RT до 1200°C Основные параметры:

Измерения на воздухе

Sample changer **10-15 позиций** Гальваностат-потенциостат: **0-10V, 0-15A**

Гелиевый рефрижератор

Тип: рефрижератор замкнутого цикла температурный диапазон от 2К до RT / 500°С

Дифрактометр для материаловедения (MSD)

Расстояние замедлитель-	L1 22.5 м
прерыватель	
Расстояние прерыватель-	L2 6.0 м
ооразец	/ -
Расстояние образец-детектор	L3 1.2 м
Общее пролетное расстояние	L1+L2+L3
	29.7 м

Максимальное разрешение по dhkl:

$2\theta = \pm 140^{\circ}, d = 2 \text{ A}$	1.7 ·10 ^{-:}
$2\theta = \pm 90^\circ, d = 2 \text{ Å}$	2.1 ·10 ⁻³

Поток на образце:

с фурье-прерывателем без фурье-прерывателя

2·10⁷ н/см²/с 10⁸ н/см²/с Интервал длин волн Сечение пучка на образце 0.6 – 6 Å 10х50 мм

Детектор обратного рассеяния $(2\theta = \pm 140^{\circ})$ ASTRA/2D-ПЧД (⁶Li/ZnS/*) Детектор при $2\theta = \pm 90^{\circ}$ ASTRA/2D-ПЧД (⁶Li/ZnS/*)

Система коллиматоров на MSD

Система коллиматоров ФСД

Materials engineering diffractometer BEER, ESS

Основные параметры:

автоматизированная диафрагма на падающем пучке набор сменных радиальных коллиматоров с пространственным разрешением 2, 1 и 0.5 мм возможность дистанционно вводить и выводить коллиматоры

Окружение образца на MSD

основной гониометр

4-осный - x, y, z, ω с точностью около 0.005 мм предельной нагрузки до 500 кг

вспомогательные гониометры

для перемещения и качения

печи (зеркальные, индукционная)

температурный диапазон от RT до 1000°C

нагрузочная машина усилие до $F_{max} = 29$ kN температурный диапазон от RT до 800°C

Дифрактометр высокой светосилы (DSHI)

RTOF + PSD ?

ПЧД на основе ZnS(Ag) на нейтронных TOF дифрактометрах SENJU [1,2] и TAKUMI [3] в научном центре J-PARC (Токай, Япония)

[1] T. Kawasaki et al., NIM A, 2014, Vol. 735, pp. 444–451. https://doi.org/10.1016/j.nima.2013.09.057

[2] T. Nakamura et al., Proc. of IEEE NSS/MIC, 26 Oct.-2 Nov. 2019, Manchester, UK. https://doi.org/10.1109/NSS/MIC42101.2019.9059981

[3] T. Nakamura et al., Proc. of the J-PARC2019, 2021, 011097. <u>https://doi.org/10.7566/JPSCP.33.011097</u>

Дифрактометр для исследований при высоких давлениях (DHP)

Основные параметры

-Диапазон достижимых давлений, ГПа 0 – 100			
-Температурный диапазон, К	1.5 - 560	- Объемы исследуемых образцов, мм ³	0.00001 - 2
- Диапазон по d _{hkl,} Å	0.6 - 12.8	при угле рассеяния $2\theta \sim 90^{\circ}$	0.015
- Диапазон по углу рассеяния 20	$30^\circ - 98^\circ$	при угле рассеяния $2\theta = 30^{\circ}-70^{\circ}$	0.020
- Пролетная база, м:	40.0	- Разрешение дифрактометра при d = 2 Å:	
- Сечение пучка	5х5 мм	- Детектор при 20 ~ 30°-70°	³ He, 2D ПЧД,
- Поток на образце:	$\sim 5 \times 10^8$	- Детектор при $2\theta \sim 90^\circ$	³ Не, модульный

Пример текстурного дифрактометра: iMATERIA at J-PARC

ВL20: iMATERIA IBARAKI Materials Design Diffractometer Диапазон по d: 0.181-450 (до 900) Å Диапазон по 2 θ : 12-175° Измерения текстуры без вращения образца (V \approx 1 см³):

- ~ <u>10 минут</u> для стали
- ~ <u>**1 час</u> для Ti-6Al-4V (при 1/5 мощности**</u>

протонного пучка)

Не только текстура! (in situ эксперименты, длиннопериодические структуры, ...)

Without detectors & shielding

T. Ishigaki et al. (2009) *Nucl. Inst. Meth. A.* 600, 189-191. *Y. Onuki et al.* (2017) *Adv. Eng. Mater.* 00, 1700227.

CKAT?

CKAT?

Текстурный дифрактометр для исследования конструкционных материалов (DTCM)

- 1 источник нейтронов,
- 2 замедлитель,
- 3 фоновый прерыватель,
- 4 фурье-прерыватель
- 5 монитор пучка,
- 6 блок детекторов обратного рассеяния,
- 7 блок детекторов 75-105°,
- 8 блок детекторов 20-40°.

Быстрые (*in situ*?) измерения кристаллографической текстуры в образцах функциональных сплавов, композитов, конструкционных материалов и других материалов с характерными размерами зёрен до ~ 50 мкм

Замедлитель	300+60 K	Интервал длин волн	до 8.8 Å
Сечение пучка на образце	20х20 мм	Детекторная система:	блоки ПЧД аксиально- симметрично пучку
Расстояние фурье- прерыватель-детектор	≈30 м	Расстояние замедлитель- детектор	≈45 м
Окружение образца:	одноосная нагрузка + нагрев + магнитное поле	Разрешение $\Delta d/d$ (временная компонента, без фурье- прерывателя, $d = 2$ Å, $\Delta t = 350$ мкс):	
Поток на образце:		$2\theta = 145 - 175^{\circ}$	0.008
без фурье-прерывателя	10^{8} н/см 2 /с	$2\theta = 75-105^{\circ}$	0.01-0.013
с фурье-прерывателем	107 н/см²/с	$2\theta = 20-40^{\circ}$	0.022-0.044

Текстурный дифрактометр для исследования конструкционных материалов (DTCM)

Что нужно решить:

Выбор оси вращения образца (текстура низкосимметричных материалов):

- 1) Вертикально (HIPPO, iMATERIA) проще установка систем окружения образца, возможно сечение пучка 15-20х50-100 мм (?).
- 2) Горизонтально (СКАТ) более равномерное покрытие полюсных фигур, выгодно при in situ нагрузочных экспериментах (есть измерения вдоль векторов рассеяния || и □ нагрузке), но сечение пучка 20х20 мм (?).

Детекторы:

- 1) Расстояние образец-детектор (уменьшить угловой размер детектора, но какие потери в интенсивности?)
- 2) ПЧД (Powtex). Обработка данных? Угловое разрешение на полюсных фигурах?
- 3) Точечные (iMATERIA). Оптимизация расположения для измерений без вращения и с вращением образца, с учётом систем окружения.
- 4) Коллиматоры?

Окружение образца

Текстурный дифрактометр высокого разрешения (DTHR)

Изучение кристаллографической текстуры в образцах с линейными размерами до 5 см с высоким разрешением ∆d/d.

Замедлитель	30 K
Сечение пучка на образце	55х55 мм
Расстояние замедлитель-детектор	≈120 м
Поток на образце:	5х10 ⁶ н/см ² /с
Интервал длин волн	до 3.3 Å
(с пропуском каждого 2-го импульса)	до 6.6 Å
(с пропуском 2-х импульсов из 3-х)	до 9.9 Å

Детекторная система:

блоки ПЧД аксиально-симметрично пучку

o **T**

Разрешение <pre>\Deltad</pre> /d (временная компон	ента, $d = 2$ Å, $\Delta t = 350$ мкс):
$2\theta = 145 - 175^{\circ}$	0.003
$2\theta = 75-105^{\circ}$	0.004-0.005
$2\theta = 20-40^{\circ}$	0.008-0.017

1 – источник нейтронов,

2-замедлитель,

3-фоновый прерыватель,

4 – λ -прерыватель,

5 – монитор пучка,

6 – блок детекторов обратного рассеяния,

7 – блок детекторов 75-105°,

8-блок детекторов 20-40°.

Окружение образца: Одноосная нагрузка + нагрев ??? Текстурный дифрактометр высокого разрешения (DTHR)

Что нужно решить то же, что и для DTCM:

Выбор оси вращения образца

Детекторы

Окружение образца

Residual stress study by neutron diffraction in RBMK reactor components

Курская атомная электростанция (построена в 1985 году): мощность - 4000 МВт, 4 энергоблока типа РБМК-1000 (мощный канальный реактор с графитовым замедлителем).

-180

Биметаллическая переходная стенка из стали и циркония исследована на нейтронном дифрактометре HRFD. Поперечное сечение биметаллического переходника сталь-цирконий, используемого в компонентах реактора РБМК

Остаточные напряжения после изготовления (вакуумное спекание при температуре 700 С) в таких разницей соединениях вызваны коэффициентов теплового расширения двух металлов, что часто приводит к возникновению трещин и разрушению.

Радиальная составляющая тензора напряжений в сечении I (черный) и сечении II (красный)

FSD@IBR-2: Charpy surveillance specimens reconstituted by welding

G.D. Bokuchava, P. Petrov et al., J. of Surf. Invest., 2016, Vol.10 (6), 1143-1153.

Temperature, °C Total absorbed energy during Charpy impact tests

Дифракция на импульсном реакторе НЕПТУН <u>II ЭТАП:</u>

1. Порошковый дифрактометр с поляризованным пучком (магнитный) (DMP)

2. Total scattering diffractometer for atomic pair distribution function analysis (TSD) Option: RTOF+Fermi choppers (interchangeable ?)

3. Дифрактометр для исследования облученных материалов (для задач **Росатома**) (DIM) Аналог MSD(?) + спец.оборудование + внешние воздействия (нагрузка+температура)

4. Дифрактометр для исследования монокристаллов (MONO)

5. Дифрактометр с импульсными внешними полями (магнитным, электрическим) (DPEF)

6. Macromolecular diffractometer (MACRO)

Список тестовых работ на ИБР-2

1. Детекторные системы

сцинтилляторы ПЧД высокого разрешения на основе ZnS(Ag) или ⁶Li-стекла

2. Прерыватели

- 3. Система сбора и накопления данных
- 4. Биспектральный замедлитель
- 5. Формирование нейтронного пучка
- б. Печки
- 7. Магниты и другое окружение образца

Заключение

Глобально новое и чего нет на ИБР-2:

- 1. Поток $\Phi = 10^8$ н/с/см²
- 2. Низкий фон ≈2%
- 3. Частота импульсов 10 гц

Чем заинтересовать РОСАТОМ:

1. Исследование необлученных материалов и изделий

"Белое пятно":

1. Дифрактометр для исследования облученных материалов

Спасибо за внимание!