Перспективы нейтронной рефлектометрии на импульсном источнике DNS-IV

Боднарчук В.И. ЛНФ ОИЯИ

• Нейтронные рефлектометры: основные принципы и организация работы

- Cobpemenhue TOF HP: ISIS, SINQ, SNS, J-SNS
- ♦ НР на ИБР-2
- Тенденции развития: ESS
- ♦ НР на DNS-IV: вызовы и возможности

Специализация нейтронной рефлектометрии

Слоистые наноструктуры. Поверхность.

- •Сосуществование сверхпроводимости и магнетизма. Эффекты близости
- •Слоистые наноструктуры
- •Межслойное и внутрислойное магнитное взаимодействие
- •Распределение намагниченности вглубь структуры в зависимости
 - от структурных параметров
- •Проникновение магнитное поля и вихревая решетка в сверхпроводнике
- •Временная зависимость доменной структуры
- •Шероховатости на границах раздела
- •Биологические системы
- •Магнитные жидкости и электролиты
- •Пленки Ленгмюра-Блоджетт

Организация измерений

Плоскости рассеяния

Source	Source Quantity		Horizontal sample Polarization	
ILL	5	1	2	3
LLB	2	1	2	1
MLZ	4	2	4	1
NIST	4	2	3	0
ANSTO	2	1	2	2
KFKI	2	0	2	0
ISIS	5	5	3	5
SINQ	3	1	3	1
SNS	2	1	1	2
LANSCE	1	0	1	1
J-PARK	2	1	1	2

Рефлектометры с вертикальным положением образца

	Titlo	Sourco	Country	Source	Set-up	Elux et comple	gintonyal	Minimal
	THE	Source	Country	type	type	Flux at Sample	q-interval	reflectivity
	ADAM	ILL	France	SS	SS	2x10 ⁶ cm ⁻² s ⁻¹	0.01 – 5.4 nm ⁻¹	1x10 ⁻⁶
	D17	ILL	France	SS	TOF	2x10 ⁶ cm ⁻² s ⁻¹	0.02 – 40 nm ⁻¹	1x10 ⁻⁶
	Pore	KEK	Japan	Pulsed	TOF	5x10 ⁵ cm ⁻² s ⁻¹	0.15 – 7 nm ⁻¹	1x10 ⁻⁶
	ASTERIX	LANSCE	USA	Pulsed	TOF	1x10 ⁷ cm ⁻² s ⁻¹	0.05 – 1.5 nm ⁻¹	1x10 ⁻⁸
	PRISM	LLB	France	SS	SS	5x10 ⁵ cm ⁻² s ⁻¹	0.01 – 50 nm ⁻¹	1x10 ⁻⁶
	MAGIC	NIST	USA	SS	SS	1.3 x10 ⁶ cm ⁻² s ⁻¹	0.01 – 50 nm ⁻¹	1x10 ⁻⁶
	PBR	NIST	USA	SS	SS	1.3 x10 ⁴ cm ⁻² s ⁻¹	0.01 – 1 nm ⁻¹	1x10 ⁻⁸
	MR	SNS	USA	Pulsed	TOF	1x10 ⁷ cm ⁻² s ⁻¹	0.01 – 15 nm ⁻¹	1x10 ⁻⁷
	Morpheus	SINQ	Switzerland	SS	SS	1x10 ⁶ cm ⁻² s ⁻¹	0.1 –1 nm ⁻¹	1x10 ⁻⁶
	PNR	VVR-M	Russia	SS	SS	1x10 ⁵ cm ⁻² s ⁻¹	0.1 – 1 nm ⁻¹	1x10 ⁻⁵
	REMUR	IBR-2	Russia	Pulsed	TOF	3x10 ⁶ cm ⁻² s ⁻¹	0.05–7 nm ⁻¹	1x10 ⁻⁵
	REFLEX	IBR-2	Russia	Pulsed	TOF	1x10 ⁵ cm ⁻² s ⁻¹	0.03–2 nm ⁻¹	1x10 ⁻⁵
	GINA	BNC	Hungary	SS	SS	4x10 ⁵ cm ⁻² s ⁻¹	0.01 – 10 nm ⁻¹	1x10 ⁻⁵
	D3	Chalk River	Canada	SS	SS	1x10 ⁶ cm ⁻² s ⁻¹	0.01–5 nm ⁻¹	1x10 ⁻⁵
	MARIA	FRM2	Germany	SS	SS	5x10 ⁷ cm ⁻² s ⁻¹	0.02–32 nm ⁻¹	1x10 ⁻⁶

SS – steady-state mode; TOF – time-of-flight mode; mode with polarized neutrons is available

Рефлектометры с горизонтальным положением образца

Title	Source	Country	Source type	Set-up type	Polarized neutrons	Flux at sample	q-interval	Minimal reflectivity
REFSANS	FRM II	Germany	SS	TOF	POL	~10 ⁶ cm ⁻² s ⁻¹	0.05 - 10 nm ⁻¹	5x10 ⁻⁷
N-REX	FRM II	Germany	SS	SS	POL	3x10 ⁶ cm ⁻² s ⁻¹	0.01 - 1.5 nm ⁻¹	1x10 ⁻⁷
FIGARO	ILL	France	SS	TOF	POL	~10 ⁸ cm ⁻² s ⁻¹	0.05 - 4 nm ⁻¹	1×10 ⁻⁶
AMOR	SINQ	Switzerland	SS	TOF	non-POL	1x10 ⁸ cm ⁻² s ⁻¹	0.01 - 5 nm ⁻¹	1x10 ⁻⁵
Platypus	OPAL	Australia	SS	TOF	POL	1x10 ⁹ cm ⁻² s ⁻¹	0.05 - 5 nm ⁻¹	1x10 ⁻⁷
LR	SNS	USA	Pulsed	TOF	non-POL	1x10 ⁷ cm ⁻² s ⁻¹	0.01 - 2 nm ⁻¹	1x10 ⁻⁶
GRAINS	IBR-2M	Russia	Pulsed	TOF	POL	2x10 ⁶ cm ⁻² s ⁻¹	0.05 - 1 nm ⁻¹	1x10 ⁻⁵
Inter	ISIS	UK	Pulsed	TOF	non-POL	1x10 ⁷ cm ⁻² s ⁻¹	0.01 - 5 nm ⁻¹	1x10 ⁻⁵
PolRef	ISIS	UK	Pulsed	TOF	POL	1x10 ⁷ cm ⁻² s ⁻¹	0.01 - 5 nm ⁻¹	1x10 ⁻⁶
OffSpec	ISIS	UK	Pulsed	TOF	POL	1x10 ⁷ cm ⁻² s ⁻¹	0.01 - 5 nm ⁻¹	First experim.
B16	J-PARC	Japan	Pulsed	TOF	POL	1x10 ⁷ cm ⁻² s ⁻¹	0.01 - 5 nm ⁻¹	First experim.
REF	CARR	China	SS	SS	non-POL	~10 ⁷ cm ⁻² s ⁻¹	0.03 - 0.5 nm ⁻¹	Under constr.

РЕФЛЕКТОМЕТРЫ ИБР-2

0÷160 0÷160 РЕМУР 0÷50 + 0÷50 18800 C3 (0÷150)x180 40x100 D1 D2 PSD SF 2 APF SF AZ PR 4200 Ø200 Ø200 10x100 8100 500 4450 9500 4 20500 200x100mm 26200 4900 29000

РЕФЛЕКС

Установка	Плоскость рассеяния	Поляриза ция	Поток на образце	Q-диапазон	λ - диапазон, Å
РЕМУР	V	+	3 x10 ⁴ c ⁻¹ cm ⁻²	0.05 – 7 нм ⁻¹	0.9 ÷ 15
РЕФЛЕКС	Н	+	10 ⁴ c ⁻¹ cm ⁻²	0.01 – 1.3 нм ⁻¹	1.4 ÷ 10
ГРЭИНС	Н	(+)	2 x10 ⁶ c ⁻¹ cm ⁻²	0.05 – 3 нм⁻¹	0.5 ÷ 10

- Низкие температуры
- Высокие температуры (газ/вакуум)
- Магнитные поля
- Термостаты (температура, влажность, давление)
- X-Ray option
- MBE in-situ камера

1.5 ÷ 300 K 300 ÷ 900/1900 K 10 ÷ 15 T

Анализ поляризации. Намагниченные зеркала

multi-channel V-cavity

wide angle polarisation analyser

Анализ поляризации. Pol He3 - filter

E. Babcock, S. Mattauch, A. loffe, Nucl. Instrum. Methods A 625, 43 (2011).

J1 cell with D = 6 cm!T1_{lab}=660h

Polarization vs. time of J1 polarized in-situ on the JCNS reflectometer

- Very high ³He polarization: 80.2% and T1= ∞
- AFP flipper of ³He polarization no need in a flipper after the sample

Анализ поляризации. Pol He3 - filter

3He polarization => 78.5%

Transmission through the polarizer 23.8% with neutron polarizing power 97.6% for 0.895Å neutrons.

Анализ поляризации. Pol He3 - filter

θ ≈240°

Pressure ³He = 2bar T_1 =300 hours (c.f. theoretical limit T_{dipole} =400h) Designed to cover hot neutrons, $\lambda = (0.55 \div 3.3)$ Å

Covers hot neutrons!

Results of TOF neutron test at V20@HZB

Future ESS reflectometers

ESTIA . A focusing reflectometer for small samples

Future ESS reflectometers

FREIA . Fast Reflectometer for Extended Interfacial Analysis. Fast Kinetic Studies to Reflectometry

Схема работы на реакторе ИБР-2

Au(500Å)/Si, $\phi = 14 \cdot 10^{-3}$

Au(500Å)/Si, $\phi = 14 \cdot 10^{-3}$

Chopper1 – 1m; Choper2 – 21 m; $\lambda_{min} = 1$ Å; $\lambda_{max} = 15$ Å Background substrate – 5% of averaged power

Рецикличность