Radiation material science. Neutrons vs heavy ions

V.A. Skuratov

Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia

Irradiation parameters in nuclear facilities

- Main Candidate Materials
- Material research in spallation environment

Irradiation parameters in nuclear facilities

Reactor type	Parameters							
	Damage rate	Helium generation rate	Hydrogen generation rate					
Thermal reactors	3 dpa/year	~ 280 appm/year	~ 60 appm/year					
Fast reactors	3040 dpa/year	2030 appm/year						
Fusion reactors	20 dpa/year	300 appm/year	800 appm/year					
Reactors of IV generation, electro nuclear systems	eactors of IV 540 dpa/year eneration, lectro nuclear ystems		30004000 appm/year					

Radiation damage dose: dpa - displacement per atom

Irradiation parameters in nuclear facilities

Defect poduction (in steels)	Fusion neutrons (3-4 GW reactor)	Fission neutrons (BOR 60 reactor)	Mixed spectrum of high energy protons and spallation neutrons (SINQ)
Damage rate [dpa/year]	20-30	~ 20	~ 10
Helium [appm/dpa]	10-15	~ 1	~ 50
Hydrogen [appm/dpa]	40-50	~ 10	~ 450

Nadine Laurence Baluc

Centre of Research in Plasma Physics Association EURATOM - Swiss Confederation Swiss Federal Institute of Technology - Lausanne

Summary of operating parameters for fusion, fission and spallation facilities

Parameters	Technology					
	Fusion	Fission (Generation IV)	Spallation			
Energy	<14 MeV	<1-2 MeV (most n's)	≤ 1MeV GeV (p and n)			
He/dpa	10	0.1-50	50-100			
Stresses Moderate, slowly varying		Moderate, slowly varying	High, pulsed			

L.K. Mansur et al. / Journal of Nuclear Materials 329–333 (2004) 166–172

Operating temperatures and displacement damage dose regimens for structural materials in generation II and Generation IV reactors

S.J. Zinkle, J.T. Busby, Mater. Today 12 (11) (2009) 12-19

Main phenomena limited long-term radiation stability of reactor materials

Void Swelling

Irradiation Creep

Radiation Embrittlement/Helium Embrittlement

Specific types of hydrogen-induced damage of metals and alloys:

hydrogen embrittlement;
cracking from precipitation of internal hydrogen;
cracking from hydride formation;
hydrogen-induced blistering

Main Candidate Materials

Main candidate materials have a chemical composition that is based on low activation Fe, Cr, V, Ti, W, Si, C

Reduced activation ferritic/martensitic (RAFM) steels
Oxide dispersion strengthened (ODS) RAFM steels
Oxide dispersion strengthened RAF steels
Vanadium-base alloys
C/C, SiC/C, SiC/SiC ceramic composites

ODS = Oxide dispersion strengthened alloys

Ferritic matrix + 5÷50 nm size thermally stable oxides dispersed within it

Strengthening principle in ODS alloys: Nanoparticles are obstacles to dislocation glide

ODS steels are promising candidates for fuel cladding

Strengthening of alloys: ODS principle

Increase obstacles to dislocation glide Precipitates or other dislocations Finer dispersoides and higher number density

$$\Delta \sigma \propto \mathbf{A} + \frac{2 \,\mu b}{l_{precitates}}$$

Example of commercial ODS

chromia-forming alumina-forming

	from	Fe	Ni	Cr	AI	Ti	Мо	W	others	С	Y ₂ O ₃
MA 956	INCO	base		20	4,5	0,5					0,5
PM 2000	Plansee	base		20	5,5	0,5					0,5
ODM 751	Dour Metal	base		16,5	4,5	0,6	1,5				0,5
MA 957	INCO	base		14		1	0,3				0,25
MA758	INCO		base	30	0,3	0,5				0,05	0,6
MA754	INCO		base	20	0,3	0,5				0,05	0,6
PM 1000	Plansee		base	20	0,3	0,5					0,6
MA760	INCO		base	20	6		2	3,5	Zr 0,15	0,05	0,95
PM 3030	Plansee		base	17	6		2	3,5	Ta 2 Si 0,95		1,1
MA757E	INCO	0,5	base	16,8	4	0,5				0,06	0,7
HDA-8077	Cabot		base	15,7	4,2					0,06	Y :1,6
ΜΑ6000 (γ')	INCO		base	15	4,5	2	2	2	Ta 2 Zr 0,15	0,05	1,1
ΜΑ753 (γ')	INCO		base	20	1	2,2				0,05	1,3

Matgen4.2 – February 6, 2009– TR 11

Thermal creep of MA957 and 18%Cr-ODS alloys at 650° C / 250 MPa

J. Malaplate et al., Journal of Nuclear Materials 417 (2011) 205-208

Comparison of void swelling at 450-480°C in conventional ferritic/martensitic and ODS steels

S. Zinkle et. al. Development of Next Generation Tempered and ODS Reduced Activation Ferritic/Martensitic Steels for Fusion Energy Applications

Eurofer ODS steel

unirradiated

1 MeV He irradiated to 78.8 dpa at 532°C

1 MeV He irradiated to 30.5 dpa at 580° C

I. Monnet et al., Journal of Nuclear Materials 335 (2004) 311-321

Radiation stability of ODS alloys against fission fragment impact

EP450 ODS alloy

EP450/ Xe 167 MeV/ 1×10¹²cm⁻²

$15CRA-3/Xe \ 167 \ MeV/\ 1 \times 10^{12} cm^{-2}$ S_e = 23 keV/nm

Mean track diameter is 7.5 nm

EP450/ Xe 167 MeV/ 1×10^{12} cm⁻² S_e = 23 keV/nm

HRTEM and DF TEM micrographs of latent tracks in Y₂Ti₂O₇

Cr16/ Bi 700 MeV/ 1.5×10¹³cm⁻²

Amorphization of Y-Ti oxides induced by irradiation in the ion track overlapping regime (plane view DF, SAD)

Accelerator for applied research – IC100

B⁺², Ne⁺⁴, Ar⁺⁷, Kr⁺¹⁷, Xe⁺²⁶ ions with energy \approx 1.2 MeV/amu

lon fluence range – up to 10¹⁵cm⁻²

Radiation tolerance of (Am, Np, Pu, Zr)N as inert matrix fuel

Inert matrices - ceramics with a high melting point and with low neutron absorption cross sections to be used as hosts for transmutation of actinides via nuclear reactions

M. Streit et al. Journal of Nuclear Materials 319 (2003) 51

Radiation tolerance of nanostructured ZrN coating on cladding materials simulating fission fragments impact

TEM image of as-grown 80 nm ZrN layer

Bright field TEM micrograph of virgin ZrN sample

TEM (100 nm / 167 MeV Xe)

3x10¹² to 5x10¹⁴ ions/cm²

Results (XRD)

Xe, 167 MeV

Bi, 695 MeV

X-ray diffraction patterns recorded on virgin and swift heavy ion irradiated nanocrystalline ZrN samples

- □ The phase composition of nanocrystalline ZrN is not changed after heavy ion irradiation at electronic stopping power up to 49 keV/nm
- TEM examination does not reveal latent tracks formation in ZrN irradiated with heavy ions of fission fragments energy

Irradiation of constructive reactor materials for postradiation studies (structure, mechanical properties)

Real-time examination of irradiating materials

Identification of small irradiation induced defects (type, size, density)

by combining SANS and transmission electron microscopy (TEM)

observations with molecular dynamics (MD) simulations and TEM image

simulations

Thank you for your attention!