Small-angle neutron scattering at DNS-IV

Mikhail V. Avdeev

Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia

Outline

- **SANS diffractometers: overview**
- Tendencies of development at pulsed sources: ESS
- ***** SANS at DNS-IV: first stage

SANS: areas of applications

- Complex fluids (surfactant solutions, polymers, liquid crystals, sols and suspensions)
- Biological macromolecules and membranes
- Amorphous substances (carbon, silicon, solid polymers, glasses, foams)
- > Polycrystalline and composite materials
- Magnetic colloids
- Long-period and macromolecular structures
- Submicron and micron inhomogeneities (USANS, SESANS)

Fraction of SANS experiments within User Policies at neutron centers up to 50 % !

SANS: typical schematic

Optimal configuration

Typical characteristics

Q-resolution: 5 - 30%, Q-range: 0.01 - 5 nm⁻¹, Dynamic range: 5 - 100 Exposure time of one curve: 1 - 100 min Polarizer (optional)

Extended sample environment system (T, p, H). Automatic sample cartridge (5 – 30 samples) PSD (50 × 50 - 100 × 100 cm, resolution 0.5 - 1 cm)

KWS-1 (MLZ, Garching): Principal layout

- Neutron guide NL3
 High-speed chopper Δλ/λ=1%
 Changeable polarisers
 Spin flipper
- ④ Spin flipper
- ⑤ Neutron guide sections 18 x 1m

- MgF₂ focussing lenses
- ⑦ Sample position with magnet
- [®] ³He spin filter with reversable polarisation (to be implemented)

https://www.mlz-garching.de/kws-1

KWS-1 (MLZ, Garching): Technical data

Overall performance

•Q = $0.0007 - 0.5 \text{ Å}^{-1}$ •Maximal flux: $1.5 \cdot 10^8 \text{ n cm}^{-2} \text{ s}^{-1}$ •Typical flux: $8 \cdot 10^6 \text{ n cm}^{-2} \text{ s}^{-1}$ (collimation 8 m, aperture 30 x 30 mm², $\lambda = 7 \text{ Å}$)

Velocity selector

•Dornier, FWHM 10%, λ = 4.5 Å – 12 Å, 20 Å

Chopper

•For TOF-wavelength analysis, FWHM 1%

Polariser

•Cavity with V-shaped supermirror, all wavelengths

•Polarisation > 90%, typical 95%

Spin-flipper •Radio-Frequency (efficiency > 99.8%)

Neutron lenses

•MgF₂, diameter 50 mm, curvature 20 mm

•Packs with 4, 6, 16 lenses

Active apertures •2 m, 4 m, 8 m, 14 m, 20 m

Aperture sizes •Rectangular 1 x 1 mm² – 50 x 50 mm²

Sample aperture •Rectangular 1 x 1 mm² – 50 x 50 mm²

Sample stage •Hexapod, resolution better than 0.01°, 0.01 mm

Detector

•Detection range: continuous 1.5 m – 20 m •⁶Li-Scintillator 1 mm thickness + photomultiplier •Efficiency >95% •Spatial resolution 5.3 x 5.3 mm², •128 x 128 channels •Max. count rate 0.6 MHz $(T_{dead} = 0.64 \ \mu s)$

KWS-1 (MLZ, Garching): Sample environment

- Rheometer shear sandwich
- Rheowis-fluid rheometer (max. shear rate 10000 s⁻¹)
- Anton-Paar fluid rheometer
- Stopped flow cell
- Sample holders: 9 horizontal x 3 vertical (temperature controlled) for standard Hellma cells 404-QX and 110-QX
- Oil & water thermostats (range $-40 +250^{\circ}$ C), electric thermostat (RT -200° C)
- 8-positions thermostated (Peltier) sample holder (-40°C ... +150°C)
- Magnet (horizontal, vertical)
- Cryostat with sapphire windows
- High temperature furnace
- Pressure cells (500 bar, 2000 bar, 5000 bar)

KWS-1 (MLZ, Garching)

KWS-1 (MLZ, Garching)

Cobalt ferrite nanoparticles in quartz matrix

TOF-SANS at pulsed neutron sources

ISIS (3) LOQ – standard SANS (non-pol) SANS2d – extended SANS (non-pol) Larmor – SESANS

ISIS (1) ZOOM – VSANS (pol)

SNS (2) EQ-SANS – extended SANS (non-pol) USANS

LANSCE (0)

J-PARC (1) TAIKAN – SANS and WANS (pol)

IBR-2 (1) YuMO – standard SANS (non-pol)

ESS (2) SKADI – General Purpose SANS (pol) LoKI – Broadband SANS (non-pol)

ISIS TS2 v = 10 Hz, $\Delta t = < 50$ µs

Sans2d Time-of-flight Small-Angle Neutron Scattering instrument (**TS2**)

•Wide Q-range ($0.02 < Q \text{ nm}^{-1} < 20$); most is accessible with one instrument configuration.

•Five 2 m guide sections with variable collimation apertures.

•Two moveable 1 m² detectors giving the most detector area on any SANS instrument in the world and almost 77,000 pixels.

•High-flux at sample (3-10 times <u>LOQ</u> on TS1, depending on Q-range).

•Small sample size/volume (<15 mm diameter or only 0.3-3 ml).

Sans2d Time-of-flight Small-Angle Neutron Scattering instrument (**TS2**)

PSD

Sans2d

 $\tau \thicksim 10 \ s$

J-PARC/J-SNS pulsed neutron source v = 25 Hz

TAIKAN Small and Wide Angle Neutron Scattering Instrument

Moderator	Coupled hydrogen moderator
Neutron wavelength band	0.05-0.8 nm (unpolarized neutron)
Q-range	5×10^{-2} -100 nm ⁻¹ (unpolarized neutron)
Beam size	10 mm×10 mm (Typical)
Auxiliary equipment and sample environment	Sample changer (10 samples, T = -25 +125° C), 4K cryostat, 1Tesla electromagnet, etc.

IBR-2 reactor

YuMO small-angle diffractometer

- 1 power modulator;
- 2 reactor core with moderator;
- **3 background chopper;**
- 4 first aperture (pin-hole);
- 5 vacuum tube;
- 6 second aperture (pin-hole);
- 7 thermostate;
- 8 sample table;
- 9 goniometer;
- 10-11 V-standards;
- **12 ring-wire detector;**
- 13 position-sensitve detector ;
- 14 direct beam detector.

YuMO small-angle diffractometer

Neutron flux at sample place	1-4×10 ⁷ cm ⁻² s ⁻¹
Neutron wavelength band	0.5 – 8 Å
q-range	0.007 – 0.5 Å ⁻¹
q-resolution	5 – 20 %
Dynamic q-range (q _{max} /q _{min} in one	up to 100
measurement)	
Beam size at sample place	Ø 14 mm
Detectors	Two-detector system, He ³ , ring wire detectors,
	no-radial sensitivity
Detector of direct beam	⁶ Li-convertor
Detector PSD	PSD, ³ He, 60×60 cm ² , resolution 5×5 mm ²
Number of samples in	25
automatic cartridge	
Temperature range	+4°C ÷ + 70°C
	(standard quartz cells)
	-20°C ÷ + 130°C
	(requires special sample holder)
Sample environment	Electromagnet 2.5 T, (p, V, T)-cell

YuMO small-angle diffractometer

CONCEPT OF SMALL-ANGLE DIFFRACTOMETER IN CLASSICAL CONFIGURATION AT THE CRYOGENIC MODERATOR OF IBR-2 REACTOR

 $\mathbf{T} = \mathbf{100} \ \mathbf{K}$

Spectrum calculations

Total flux calculations (flux density on moderator 10¹² cm⁻² s⁻¹)

Temperature of moderator		100 K	300 K
Before bender	1.0e9	4.3e8	1.8e8
After bender	3.9e8	8.5e7	1.4e7
Sample position (collimation length 1 м)	2.3e8	5.6e7	1.0e7
Sample position (collimation length 10 м)	7.4e6	2.7e6	7.2e5

 $\begin{array}{l} 30 \ K - working \ mode \ (flux \ at \ sample > 10^6 \ cm^{-2} \ s^{-1}) \\ 300 \ K - mode \ for \ high-scattering \ systems \\ (flux \ at \ sample > 10^5 \ cm^{-2} \ s^{-1}) \end{array}$

M.V.Avdeev, R.A.Eremin, V.I.Bodnarchuk, I.V.Gapon, V.I.Petrenko, R. Erhan, A.V. Churakov, D.P.Kozlenko, J. Surf. Investigation. 12(4) (2018) 638-644.

Polarized neutrons

Transmission polarizer: S-shaped

Transmission ³He analyzer

unpolarized incoming neutrons

polarized ³He

polarized outgoing neutrons

Concepts of SANS instrumentation at neutron sources

MLZ, Garching

KWS-1 high resolution SANS diffractometer with full polarization analysis

KWS-2 high flux SANS diffractometer (non-polarized beam)

KWS-3 is a very small angle neutron scattering (VSANS) instrument

Concepts of SANS instrumentation at neutron sources

ORNL, Oak-Ridge

- GP-SANS General-Purpose Small-Angle Neutron Scattering Diffractometer
- BIO-SANS Biological Small-Angle Neutron Scattering Instrument
- EQ-SANS Extended Q-Range Small-Angle Neutron Scattering Diffractometer

ANSTO, Sydney

- Quokka Small-angle neutron-scattering instrument
 - Bilby Small-angle neutron-scattering instrument (TOF option) (built due to strong excess of proposals)

ESS pulsed neutron sources, v = 14 Hz, Δt_0 = 2860 µs

SKADI SANS diffractometer, ESS

SoNDE Detector, ESS

Hamamatsu H8500 multianode photomultiplier with high voltage cable (picture from Hamamatsu). The device has got a sensitive area of 89% and pixel sizes of about 6 mm x 6 mm

Position reconstruction by Anger method based on photomultiplier light sensors

Project (No. 654124) is funded by the Horizon 2020 Framework Programme of the European Union.

Sample Environment Systems for Fluids Including Gases, Liquids and Complex Fluids (FLUCO)

- Temperature, spanning the approximate range of 223 473K;
- Relative humidity, using H₂O, D₂O or solvents including organic solvent;
- Physical forces, including shear, torque, and stretch viscosity, including dynamic and kinematic, and fluidity friction;
- Small magnetic fields, up to 1T. For high magnetic fields, please see the Temperatures and Fields platform;
- Electrical properties, including potentiostat measurements.

LoKI SANS diffractometer, ESS

 $\begin{array}{l} L1_{max} = 10m\\ L2_{max} = 10m\\ Repetition \ rate = 14Hz \ or \ 7Hz\\ \delta\lambda_{max} = 10 \ A \ at \ 14Hz \end{array}$

Max flux on sample ~1x10⁹ n/cm²/s

2x line-of-sight closure

Dynamic q-range > 1000

Boron-10 "Lined tube" detector system

Costs 12 MEu

"Window frame" detector system

Expected parameters of DNS-IV compared to SNS and ESS

		DNS-IV	<u>SNS</u>	ESS
1.	Time-average flux density:	$(0.5 \div 12) \cdot 10^{14}$	0.1·10 ¹⁴	3·10 ¹⁴
2.	Half-width of fast neutrons:	(20 ÷ 200) µs	(20 ÷ 50) µs	2860 µs
3.	Pulse repetition rate:	(10 ÷ 30) Hz	60 Hz	14 Hz
4.	Time-average power:	(5 ÷ 10) MW	1 MW	5 MW
5.	Background power:	3.2 %	<1%	<1%
6.	Number of beam ports:	20 – 32	22	42

SANS instruments for DNS-IV. First stage

No.	Instrument	Main issue	Moderator
1	General purpose	high resolution, $q_{min} = 10^{-4} \text{ Å}^{-1}$ polarized neutrons, wide angle analyzer, two PSD 1 × 1 m, 5 × 5 mm, extended sample environment (<u>combinations with other techniques</u> , operando studies)	30 K
2	Real time	medium resolution, $q_{min} = 10^{-3} \text{ Å}^{-1}$ non-polarized PSD 0.64 × 0.64 m, 5 × 5 mm	30 K
3	Micro-samples	medium resolution, $q_{min} = 10^{-3} \text{ Å}^{-1}$ focusing devices, non-polarized PSD 0.64 × 0.64 m, 5 × 5 mm	30 K

Requirements to DNS-IV

- 1. Time-average flux density:
- 2. Half-width of fast neutrons:
- 3. Pulse repetition rate:
- 4. Moderators (at least three):
- 5. Background power:
- 6. Size of moderator :

 $(0.5 \div 12) \cdot 10^{14} \rightarrow \Phi_0 = 10 \times 10^{14} \text{ n/cm}^2/\text{s}$

- $(20 \div 200) \ \mu s \longrightarrow \Delta t_0 = 200 \ \mu s$
- $(10 \div 30) \text{ Hz} \quad \rightarrow \quad v = 10 \text{ Hz}$
- **VC, C, Th** \rightarrow Very Cold (~30 K)
 - **3-7 %** \rightarrow < 5 %, restriction for high

resolution in direct space (large q)

10-20 cm $\rightarrow 20$ cm

Conclusions

- Current and future trend in design of SANS instruments is determined by <u>high user</u> <u>demand</u> and users' interest to combination of instruments of a <u>wide range of</u> <u>purposes</u> (with fairly good characteristics) with <u>specialized instruments</u> (in situ, wide dynamic range, microsamples, special tasks).
- To date, vast experience in design of SANS instruments has been accumulated. Further improvement of this type of instruments, including detector systems, seems extremely costly.
- A "standard" set of SANS instruments can be implemented at DNS-IV based on a combination of basic characteristics (intensity, resolution, q-range) comparable to ISIS, SNS, J-SNS and ESS.
- > The main line of improvement of future SANS instruments is the development and design of the sample environment system of the new generation:
 - Combination with complementary methods
 - Specialized systems for practical tasks (catalysis, electrochemistry, food products, materials science, radioactive materials, industrial processing, etc.)