

Workshop "Advanced Ideas and Experiments for DNS-IV" 6 – 8 December, 2018, Dubna

Exotic Nuclei

A.G. Popeko

Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Researc

OUTLINES

- > What are exotic nuclei?
- > Why are they interesting?
- Production mechanisms.
- Accelerators.
- > Targets.
- > How to separate?
- How to identify?
- Summary.

What are exotic nuclei?

Chart of the Nuclides (decay modes)

What are exotic nuclei?

- > Nuclei far from the β -stability valley;
- > Nuclei at the border of nucleon stability;
- Nuclei (resonances) beyond the border of stability;
- Superhaevy nuclei;
- Nuclei with unusual form superdeformed;
- Nuclei with n- or p-"halo" or "skin";
- Nuclei with unusual structure nuclear fullerene;
- Nuclei with unusual density distribution bubble nuclei
- ≻ ...

Extended Chart of the Nuclides

Andrew Westphal, Space Sciences Laboratory U. C. Berkeley

Why are they interesting?

Why are they interesting?

- > The borders of nuclear stability: $B_n = 0$; $B_p = 0$;
- **>** How heavy can be the nuclei?
- Properties of exotic nuclei spectroscopy, masses;
- > Astrophysics;
- New decay modes;
- Unusual structures of nuclei;
- Mechanisms of reactions with exotic nuclei;
- Synthesis of even more exotic;
- Resonances beyond stability lines;
- Fundamental interactions;
- Electrodynamics of extreme fields;
- \succ β -beams;

▶

> Applications;

Collective effects and nuclear shells

Nuclei with unusual density distribution – bubble nuclei

Nuclei with unusual structure

Neutron halo, Borromean nuclei

⁹Li + n Barely Unbound n + n Barely Unbound ⁹Li + n+n Bound

Nuclear fullerene

Z=120, A=298-300 60 a-particles + 60 neutrons

Superheavy nuclei

- 1966: A. Sobiczewski, F.A. Gareev, B.N. Kalinkin: next "magic numbers" are Z=114, N=184;
- 1966: V.M. Strutinsky; "shell correction" method;
- 1967: H.B. Meldner: next "magic numbers" are Z=114, N=184.

Accuracy of predictions:

- Spontaneous fission half-life: T_{1/2} * 10^{±10} !!
- α -decay: $T_{1/2} * 10^{\pm 10} !!$

Chart of the Nuclides (life-times) SuperHeavy Elements

β-пучки (⁶He, ¹⁸Ne)

Production mechanisms

Exotic isotope production mechanisms

16

Сепаратор PN1 (Lohengrin) ILL, Grenoble, France

- \blacktriangleright Φ_n ≈ 5·10¹⁴ n/cm²/s → 1 mg ²³⁵U→ 10¹² fission/s;
- Изучение экзотических ядер;
- > Изучение деления ядер.

CARIBU (2 mg $^{252}Cf \rightarrow 10^9$ fiss/s)

ISOL or In-flight production

Pros for ISOL & In-Flight

In-flight: GSI RIKEN NSCL FRIB GANIL ANL RIBBAS	 Provides beams with energy near that of the primary beam ✓ Individual ions can be identified ✓ Luminosity (intensity x target thickness) gain of 10,000 (one week experiment* = 3 x 10⁻¹⁸ barn) Efficient (can be close to 100%) Fast (100 ns) Chemically independent separation Production target is relatively simple Broad range of RIBs
ISOL: HRIBF ISAC SPIRAL ISOLDE SPES EURIOSOL	Better separation of the selected nuclei Good beam quality (emittance) Small beam energy spread Post-acceleration allows to vary RIB energy Can use chemistry (or atomic physics) to limit the elements released 2-step targets provide a path to MW targets

Cons for ISOL & In-Flight

In-flight: GSI RIKEN NSCL FRIB GANIL ANL RIBBAS	 Very low cross section for n-rich of some elements Large energy and transverse emittances Fixed high energy Contamination by secondary products Iarge size and cost of fragment separators
10.01	

130L:	
HRIBF	Finite time to get the RIB out of source $(t_{1/2} > 10 \text{ ms})$
ISAC	Some elements are tough to produce
SPIRAL ISOLDE	Large cost of high-temperature production target
SPES	Chemistry is involved
EURIOSOL	

Accelerators

Superconducting Ring Cyclotron K=2600 RIKEN, Japan

July 2018: ⁴⁹S, ⁵²Cl, ⁵⁹Ca, ⁶⁰Ca

RIKEN RI Beam Factory (RIBF)

Intense Heavy Ion beams (up to U) up to 345AMeV at SRC Fast RI beams by projectile fragmentation and U-fission at BigRIPS Operation since 2007

Facility for Rare Isotope Beams, FRIB

FAIR, Germany

KoRIA

Beam power: 400 kW; protons – 600 MeV; U – 200MeV/A

REX – ISOLDE, CERN

Targets

FRIB Production Target and Beam Dump Area

Rare isotope beam production with beam power of 400 kW at 200 MeV/u from C to U Technical Risk: High power density: ~ 20 - 60 MW/cm³

Tritium target: ¹⁰He: 2n-transfer

How to separate?

Background

- Primary beam;
- Scattered beam;
- Transfer (target-like) products;
- Neutrons;
- High-energy protons or alphas.

Super-FRS FAIR, Germany

Comparison of FRS and Super-FRS

Fragment-separator ACCULINNA-2: assembling and testing.

Cryogenic Stopping Cell for MR-ToF mass spectrometry

Velocity Filter "SHIP"

The gas-filled separator GFS-II

New gas-filled separator GFS-II: assembling

Gas-Catcher

Linear gas stopper

Cyclotron gas stopper

How to identify?

Michigan State University (USA)

Example: ⁴⁰Mg Production, 120 pnA ⁴⁸Ca 140 MeV/u

Kinematical complete experiments

Detector system for identification of ¹⁰**He produced in reaction** ⁸**He(t,p)**

Storage-ring mass spectrometry

SHIP-trap

New focal plane detector GABRIELA

GABRIELA - Gamma Alpha Beta Recoil Investigation with the Electromagnetic Analyser

Summary

World view of rare isotope facilities

In-flight production, in target production

The limits of the nuclear landscape J. Erler, et al., doi:10.1038/nature11188

9035 nuclides with $2 \le Z \le 120$ are predicted to be bound

More than 3000 new nuclides have been discovered, more than 6000 of most exotic nuclei are awaiting to be discovered.

- The studies of exotic nuclei are especially important for nuclear structure, fundamental interactions and astrophysics.
- > The next-generation facilities will provide excellent possibilities for research and education.
- There are many extremely technical problems on the way to new nuclei which must be solved by the next-generation scientists.

THANK YOU FOR YOUR ATTENTION !