

Joint Institute for Nuclear Research Frank Laboratory of Neutron Physics



## Proton-driven high-flux pulsed neutron source for beam research

Vinogradov A.V., Pepelyshev Yu.N., Rogov A.D., Sidorkin S.F.

Dubna

2018





- Thermal neutron flux density on water moderator surface  $\Phi > 10^{14} \text{ n/(cm}^2 \text{ s});$
- According to nuclear safety rules at  $K_{eff} < 0.98$  there is no need for a protection system. In the future, nuclear safety rules for high-power (MW) subcritical systems may be changed to meet more stringent requirements. In this case, nuclear safety can be ensured by a deep subcriticality of the core. Multiplication factor  $K_{eff} \le 0.98$  (0.95);
- Proton beam power on target Ep + = (0.1 0.15) MW;
- Use of reliable materials and proven technologies.



Illustrative representation of critical size of the sphere





**Critical size of the sphere** 





#### Pu Fuel (IBR-2)

+Critical Mass: ~50-100 kG +Fuel License: YES +Na Void Effect : -5% +Fission Lifetime: ~50 nsec +Delayed Neutrons β<sub>eff</sub>: ~2.16e-3

#### Np Fuel

-Critical Mass: ~400-500 kG(money)-Fuel License:NO(money)-Na Void Effect:+0.5% \_+1%(NS)-Fission Lifetime:~10 nsec(NS)-Delayed Neutrons βeff:~1.3e-3(NS)

Sensitivity to Perturbation of Reactivity

-High -Power Limit(Dynamic Instability): >2MWt -Pulse Half-width: ~200 μsec Thermal Flux(2 MWt): ~5e12 n/cm^2sec --Ultrahigh(Nuclear Safety-NS) -Power Limit(Dynamic Instability):>1-2MWt +Pulse Half-width: ~50 μsec Thermal Flux(2 MWt): ~3e12 n/cm^2sec



**Illustrative representation of categories of neutron sources driven by a proton accelerator** 



1. Non-multiplying target



2. Multiplying target



3. One-core booster



4. Two-core booster







Fig. 1. Illustrative representation of categories of neutron sources driven by a proton accelerator.

## **Table 1.** Comparison of design characteristics of optimal variantsof proton-driven neutron sources.

| N⁰ | Parameter                                                                                                                                | 1. Non-multiplying<br>target |              | 2. Multiplying<br>target | 3. One-core booster |                  | 4. Two-core<br>booster | 5. Two-cascade<br>booster |
|----|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|--------------------------|---------------------|------------------|------------------------|---------------------------|
| 1  | Multiplication factor, Keff                                                                                                              | -                            |              | 0.98                     | 0.98                | 0.98             | 0.98                   | 0.98                      |
| 2  | Target                                                                                                                                   | W                            | U-238        | Np-237                   | W                   | U-238            | Np-237                 | Np-237                    |
|    | Coolant                                                                                                                                  | Water                        | Water        | Pb-Bi                    | Water               | Water            | Water                  | Sodium                    |
|    | Target volume, l                                                                                                                         | 19.6                         | 19.6         | 39.7                     | 37                  | 37               | 37                     |                           |
|    | Target mass, kg                                                                                                                          | 340                          | 337          | 536                      | 640                 | 634              | 500                    | 60                        |
| 3  | Parameters of core                                                                                                                       |                              |              |                          |                     |                  |                        |                           |
|    | Fuel                                                                                                                                     |                              |              |                          | PuO <sub>2</sub>    | PuO <sub>2</sub> | PuO <sub>2</sub>       | Metallic Pu               |
|    | Volume, l                                                                                                                                |                              |              |                          | 20                  | 20               | 20                     |                           |
|    | Fuel mass, kg                                                                                                                            |                              |              |                          | 170                 | 170              | 170                    | 210                       |
|    | Coolant                                                                                                                                  |                              |              |                          | Water               | Water            | Water                  | Sodium                    |
| 4  | Full power of booster, MW                                                                                                                | 0.1                          | 0.13         | 7.6                      | 10.0                | 13.0             | 10.3                   | 15.0                      |
| 5  | Thermal neutron flux density<br>on the surface of flat<br>(grooved) water moderator<br>$\varphi_{th}$ , $10^{13}$ n/(s·cm <sup>2</sup> ) | 0.6<br>(1.0)                 | 1.2<br>(1.9) | 9.0<br>(15.3)            | 25.0<br>(42.5)      | 28.0<br>(47.6)   | 34.0<br>(57.8)         | 8.8<br>(15.0)             |
| 6  | Lifetime of prompt neutrons, s                                                                                                           |                              |              | 1.40.10-6                | 2.0.10-6            | 2.0.10-6         | 1.98.10-6              | 2.80.10-6                 |



## **Optimal variant of the source (1)**



**Fig. 2**. Evaluation model of a booster with a rotating tungsten target and plutonium dioxide core

## **Optimal variant of the source (2)**





**Fig. 3**. Evaluation model of a booster with a rotating tungsten target and plutonium dioxide core.



### **Rotating target**





Fig. 4. Schematic representation of the target disk

- Rate of rotation: 10 rpm
- Linear velocity of rim: 100 m/s



## Target as a reactivity modulator



#### Reactivity on prompt neutrons

$$\varepsilon_m$$
 – maximum reactivity

Multiplication  $Y = \frac{1}{-\varepsilon_m}$ 

$$\varepsilon = \rho - \beta = \varepsilon_m + \varepsilon_{MR}$$

$$\mathcal{E}_m < 0$$

Parabola coefficient near the maximum reactivity:

$$\alpha = 1.14 \cdot 10^{-5} 1/s^2$$

Modulation depth:

$$\Delta k_{\rm mr} = 0.02 - 0.04$$







#### **Background between pulses**



**Fig. 7**. Neutron background between pulses, F, in percentage of total power, as a function of reactivity modulation depth  $\Delta K_{\rm mr}$  at a multiplication of 20 ( $K_{\rm eff} = 0.95$ ), 50 ( $K_{\rm eff} = 0.98$ ), 100 ( $K_{\rm eff} = 0.99$ ) and 200 ( $K_{\rm eff} = 0.995$ ) (a) and on  $K_{\rm eff}$  at  $\Delta K_{\rm mr} = 0, 2$  and 4% (b). Prompt neutron lifetime is  $\tau = 0.5$  µs.



#### **Power pulse**





**Fig. 6**. Calculated power pulse shape at  $K_{eff} = 0.98$  for two neutron lifetime values of 0.5 (1) and 1.3 µs (2) at a pulse frequency of 30 Hz and proton pulse duration of 20 µs: (a) - logarithmic and (b) - linear scale





#### **Table 2.** Power pulse parameters in calculations using a point model.

| Parameter                               | Value |     | Parameter                                           | Value |      |
|-----------------------------------------|-------|-----|-----------------------------------------------------|-------|------|
| Multiplication factor, K <sub>eff</sub> | 0.98  |     | Proton pulse duration, µs                           | 20    |      |
| Average thermal power of source, MW     | 8.0   |     | Reactivity modulator efficiency, abs                | 0.04  |      |
| Target                                  | W     | 1 [ | Pulse energy, MJ                                    | 0.45  |      |
| Pulse repetition rate, 1/s              | 30    |     | Neutron lifetime, µs                                | 0.5   | 1.3  |
| Average proton current, mA              | 0.083 |     | Pulse duration, µs                                  | 27    | 45   |
| Proton beam power on target,<br>MW      | 0.1   |     | Background during pulse<br>period,% of total energy | 3.5   | 3.6  |
| Proton energy, GeV                      | 1.20  |     | Amplitude of power pulse, MW                        | 9500  | 5700 |



## **Moderators** (1)



- Moderators are positioned in two planes.
- A grooved moderator is at the bottom.
- Moderators are visible from both sides.
- For all beamlines the direct passage of fast neutrons is excluded.
- The upper moderator consists of two parts: a water flat one poisoned with boric acid to shorten the pulse duration and a cold moderator.



Fig. 8. Scheme of evaluation model of the core surrounded by moderators



#### **Moderators (2)**





Fig. 9. Layout of neutron moderators: a) top view, b) bottom view



#### **Moderators (3)**





Fig. 10. Layout of a "butterfly"-type neutron moderator



#### **Thermal neutron pulse**





**Fig. 11.** Thermal neutron pulse shape on the surface of a flat water moderator for two multiplication factor values  $K_{eff} = 0.98$  and 0.95 without reactivity modulation: a)  $\delta$ -function proton pulse irradiation; b) proton pulse with a duration of 20 µs.





**Table 3.** Parameters of thermal neutron pulse on the surface of flat water moderator under irradiation of tungsten target with  $\delta$ -function proton pulse without reactivity modulation.

| Parameter                                | Value               | Parameter                                                                             | Value |      |
|------------------------------------------|---------------------|---------------------------------------------------------------------------------------|-------|------|
| Pulse repetition rate, 1/s               | 30                  | Multiplication factor, $K_{\rm eff}$                                                  | 0.98  | 0.95 |
| Average proton current, mA               | 0.083               | Full width at half maximum, µs                                                        | 100   | 70   |
| Proton beam power on target, MW          | 0.1                 | Average thermal neutron flux                                                          |       |      |
| Proton energy, GeV                       | 1.2                 | density on flat moderator surface,                                                    | 2.0   | 1.0  |
| Proton pulse duration                    | δ-function<br>pulse | $10^{14} \mathrm{cm}^{-2} \cdot\mathrm{s}^{-1}$                                       |       |      |
| Neutron lifetime, s 1.0 10 <sup>-6</sup> |                     | Peak thermal neutron flux density, 10 <sup>16</sup> cm <sup>-2</sup> ·s <sup>-1</sup> | 6.4   | 4.5  |



### Neutron spectrum on flat water moderator surface





**Fig. 12.** Energy distribution of thermal neutron flux on the surface of a flat water moderator for two values of multiplication — 50 and 20



# Neutron spectrum on the surface of flat water and cold moderators





**Fig. 13.** Dependence of neutron flux density on energy (a) and wavelength (b) on the surface of moderators: 1 - lower water moderator; 2 - upper bispectral moderator; 3 - only cold moderator



#### **Neutron beams**





**Fig. 14.** Layout of the maximum number of horizontal neutron beamlines for two planes of moderators. In the direction of the proton beam one can see vertical irradiation beamlines



#### Neutron spectrum near vertical beamline





**Fig. 15.** Neutron flux density per one proton as a function of energy of neutrons coming from the end surface of the tungsten target at proton energies of 0.6, 1.2 and 2.5 GeV.







#### Table 4. Basic parameters of core cooling system.

| Parameter                                               | Value                                           |
|---------------------------------------------------------|-------------------------------------------------|
| Nominal power, MW                                       | 7 – 10                                          |
| Specific power density of the core, kW/l                | 350÷550                                         |
| Volume, <i>l</i>                                        | 20 - 26                                         |
| Height, cm                                              | 46                                              |
| Cross-section area of the core, cm <sup>2</sup>         |                                                 |
| Coolant flow area, cm <sup>2</sup>                      | 90 (570 cm <sup>2</sup> x $0.153 = 87.2$ )      |
| PuO <sub>2</sub> load, kg                               | 172 (26 $l \ge 0.691 \ge 9.6 \text{ g/ cm}^3$ ) |
| Volume fraction of materials of the core:               |                                                 |
| fuel PuO <sub>2</sub>                                   | 0.691                                           |
| steel                                                   | 0.157                                           |
| water                                                   | 0.153                                           |
| Water flow rate, m <sup>3</sup> /h                      | 94 ÷ 157                                        |
| Water velocity, m/s                                     | 3-4                                             |
| Water temperature at the core inlet, °C                 | $45 \div 50$                                    |
| Water heating in the core with 120 m <sup>3</sup> /h, K | $35 \div 40$ (~ 4 atm)                          |





- The source has inherent safety features.
- The main design-basis accident involving a loss of coolant causes a negative reactivity effect  $\Delta k_{mr} = -0.06$ , which puts the core into a deeply subcritical state.
- Various water effects associated with core refueling have zero or negative values.



## Basic characteristics of the neutron source **FLNP**



| Parameter                       | Value            | Parameter                                                                              | Value       |  |
|---------------------------------|------------------|----------------------------------------------------------------------------------------|-------------|--|
| Source power, MW                | 8.0              | Prompt neutron lifetime, s                                                             | 0.5 10-6    |  |
| Fuel                            | PuO <sub>2</sub> | Multiplication factor, K <sub>eff</sub>                                                | 0.98 (0.95) |  |
| Fuel mass, kg                   | 172              | Effective fraction of delayed neutrons B                                               | 2 165 10-3  |  |
| Fuel volume, l                  | 23               | Effective fraction of delayed field ons, p <sub>eff</sub>                              | 2.105 10    |  |
| Target material                 | W                | Maximum fuel burnup, %<br>Evaluation of burnup in the long term, %                     | 10<br>20    |  |
| Coolant                         | H <sub>2</sub> O | Average thermal neutron flux density on flat                                           | 2.0 (0.8)   |  |
| Pulse repetition rate, 1/s      | 30 (10)          | water moderator surface, $10^{14}$ cm <sup>-2</sup> · s <sup>-1</sup>                  |             |  |
| Average proton current, mA      | 0.083<br>(0.03)  | Average cold neutron flux density on CM                                                | 4.2         |  |
| Maximum pulse current, mA       | 50               | surface, $10^{13} \text{ cm}^{-2} \cdot \text{s}^{-1}$ (at $\lambda > 2,5 \text{ Å}$ ) |             |  |
| Proton beam power on target, MW | 0.1 (0.036)      | Peak thermal neutron flux density,                                                     | 5.3 (6.2)   |  |
| Proton energy, GeV 1.2          |                  | $10^{10} \text{ cm}^{-2} \cdot \text{s}^{-1}$                                          |             |  |
| Proton pulse duration, µs       | 55 (20)          | Full width at half maximum for thermal neutron pulse, µs                               | <125 (85)   |  |





- The source is feasible and falls into the category of high-flux sources both at present and in the long run.
- The source is a deeply subcritical system to which nuclear safety requirements for critical nuclear facilities do not apply.
- Thermal neutron flux density is at the level of ESS.
- The power of the proton accelerator is an order of magnitude lower than the power of accelerators of the highest-flux neutron sources.

Thank you for your attention!