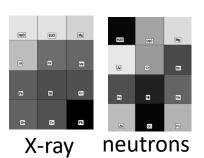
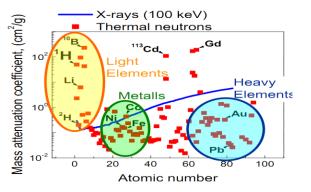
Prospects and requirements for the neutron radiography method on DNS-IV neutron source

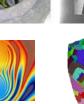
Sergey Kichanov




The neutron radiography and tomography advantages

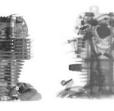
A Nondestructive probe of large rare valuable objects

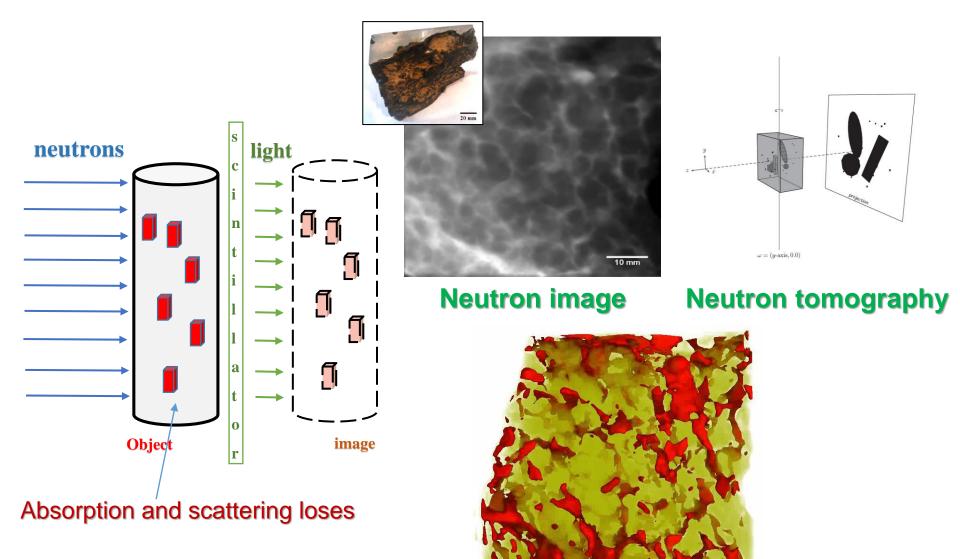
X-ray radiography (imaging)


X-ray

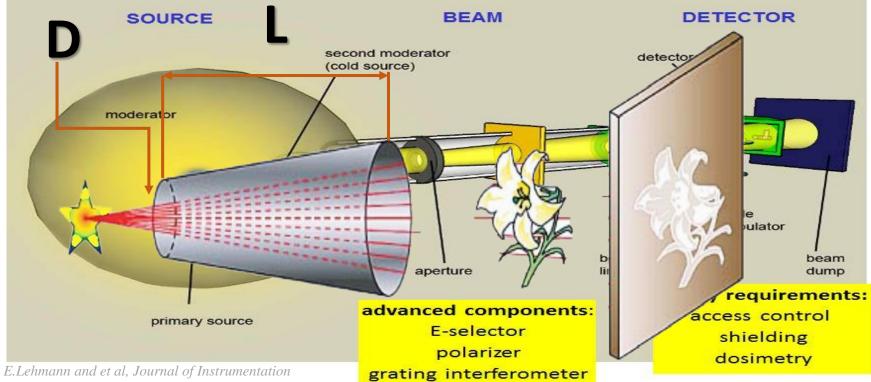
neutrons

E.Lehmann and et al, Journal of Instrumentation 6(01):C01050


• Nuclear interactions



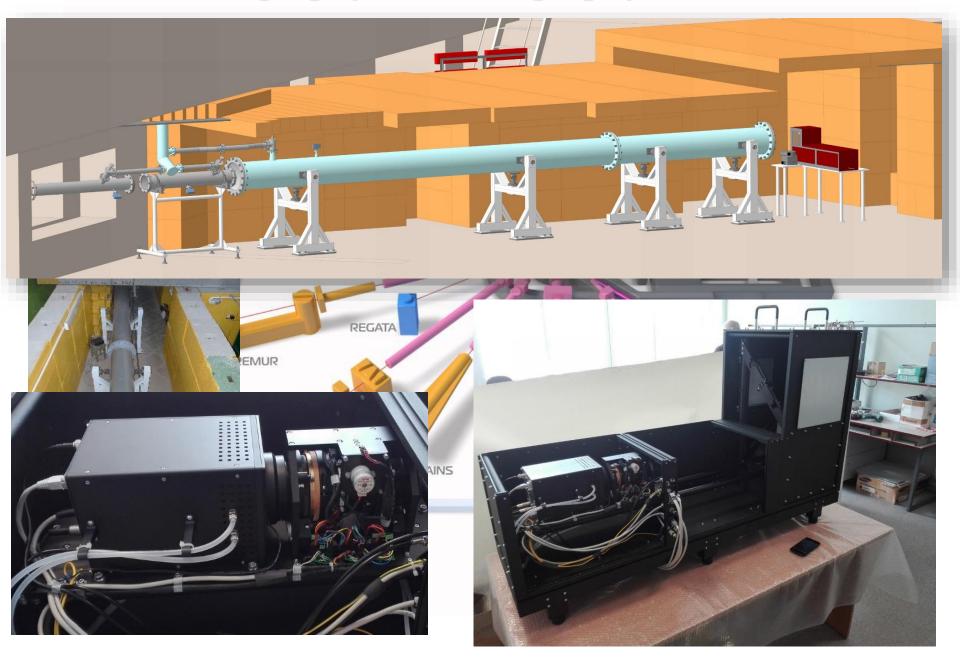
The neutron radiography and tomography methods



3D model from neutron tomography

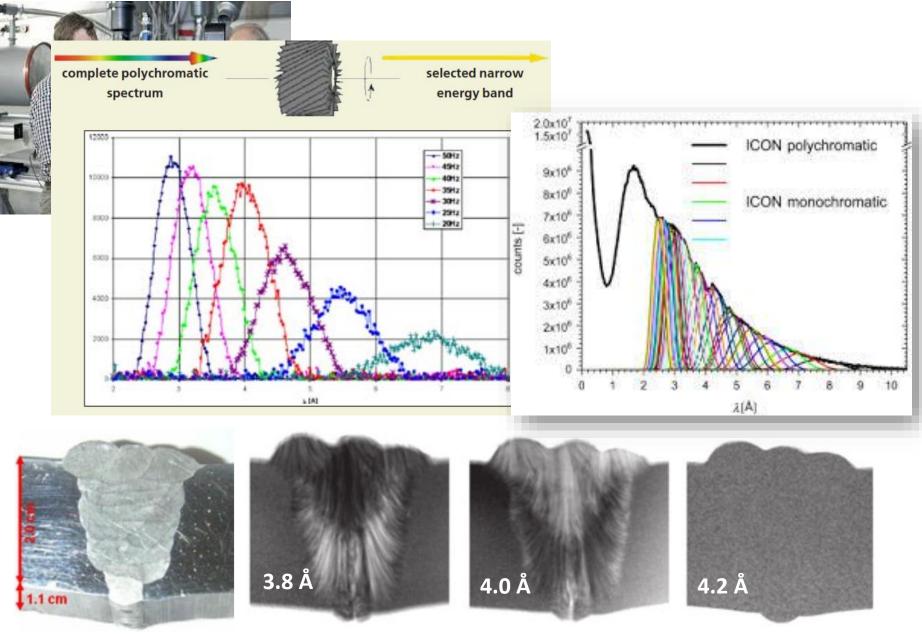
Status of Neutron Imaging – Activities in a Worldwide

Country	Center	Station	Source
Australia	ANSTO	DINGO	OPAL reactor
Germany	TU Munich	ANTARES	FRM-2 reactor
Germany	TU Munich	NECTAR	FRM-2 reactor
Germany	HZB	CONRAD	BER-2 reactor
Hungary	KFKI	NORMA	WWS-M reactor
Hungary	KFKI	NRAD	WWS-M reactor
Japan	Kyoto Univ	NI	MTR reactor
Japan	JAEA	NI	JRR-3M reactor
Japan	JAEA	RADEN	J-SNS
Korea	KAERI	NI	HANARO
Russia	JINR	NRT	IBR-2 reactor
Switzerland	PSI	NEUTRA	SINQ
Switzerland	PSI	ICON	SINQ
UK	RAL	IMAT	ISIS
USA	NIST	BT-2	NBSR reactor
USA	NIST	NG-6	NBSR reactor
USA	ORNL	CG-1D	HFIR reactor
South Africa	NECSA	SANRAD	SAFA RI reactor

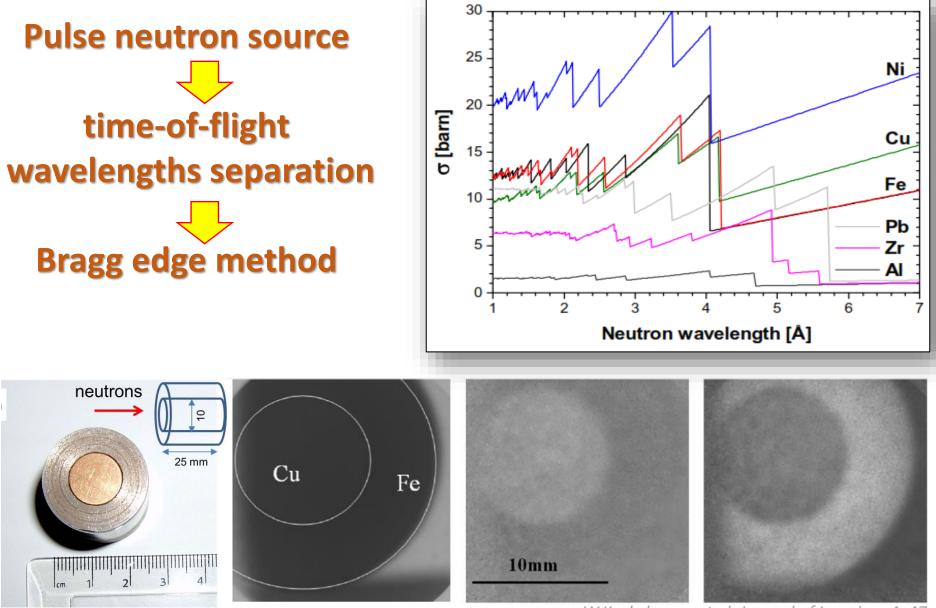

The traditional scheme of neutron imaging stations

6(01):C01050

Facility	Source	INTENSITY	L/D
CONRAD	BER-2 reactor	2.4x10 ⁷ n/cm ² s	330
ICON	SINQ	1.3x10 ⁷ n/cm ² s	343
ANTARES	FRM-2 reactor	4x10 ⁸ n/cm ² s	200
IMAT	ISIS	3.8x10 ⁷ n/cm ² s	245
NRT	IBR-2 reactor	5.5x10 ⁶ n/cm ² s	198


Neutron radiography and tomography station on IBR-2

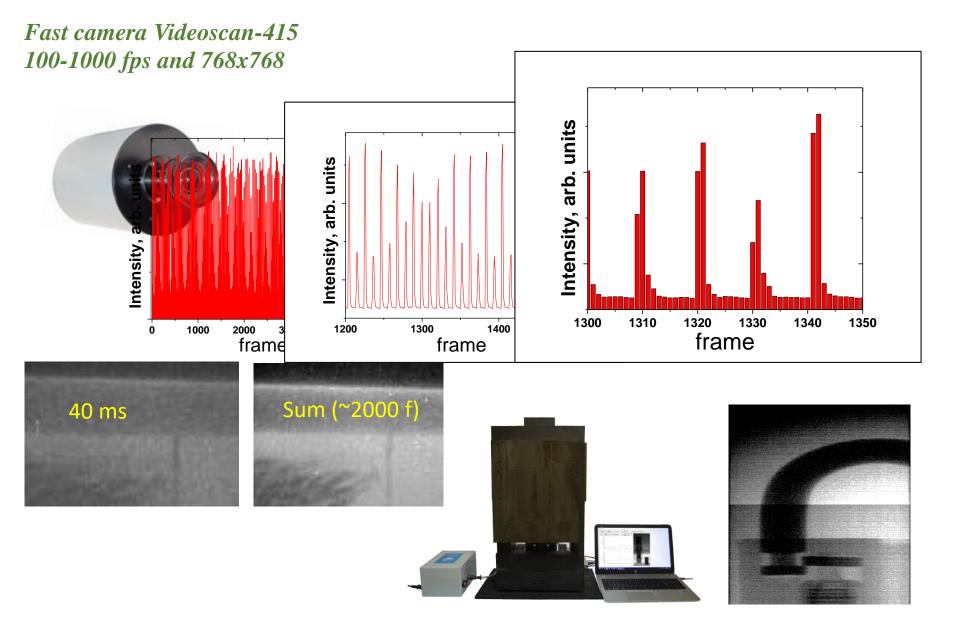
The classical scheme of neutron imaging stations: Requirements


- 1. Neutron radiography (10⁴ 10⁵) Flux-Cold
- 2. Neutron tomography (360 x 10⁴ 10⁵) Flux-Cold
- 3. Energy dispersive neutron radiography (10⁶ 10⁷) ⇒Flux-SP.Range
- 4. Neutron microscope (10⁷ 10⁹) high L/D ratio Flux
- 5. Phase contrast (neutron interferometer) (10⁷ 10⁹) > Flux
- 6. Polarized neutrons (10⁶ 10⁷) Flux
- 7. Multimodal facilities (neutron and X-rays; imaging and diffraction; imaging and activation analysis)

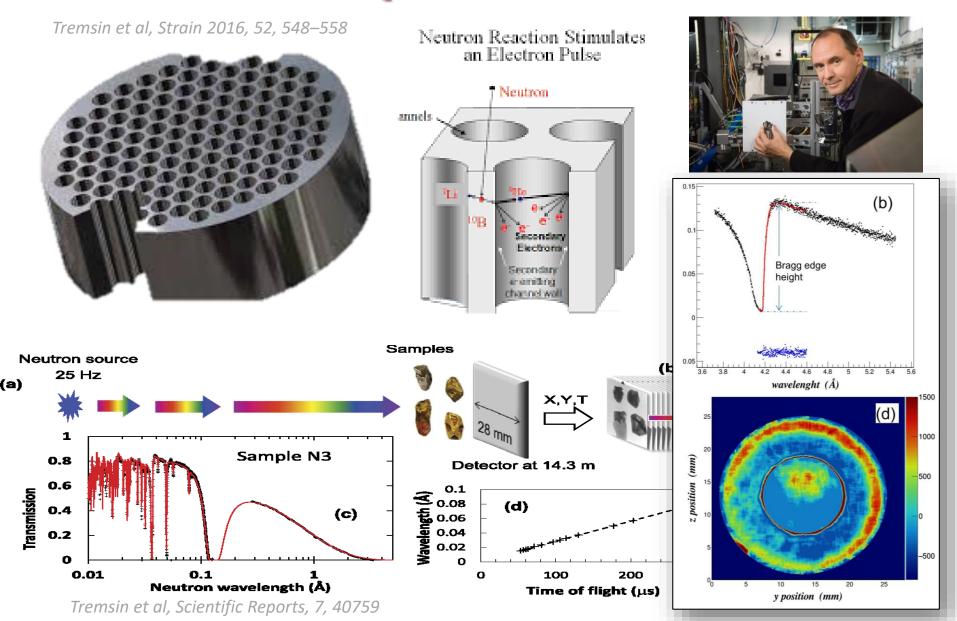
The energy dispersive neutron radiography

N.Kardjilov et al, International Journal of Materials Research, 103, 151-154

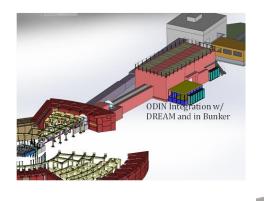
The energy dispersive neutron radiography


W.Kockelmann et al, Journal of Imaging, 4, 47

The energy dispersive neutron imaging stations: Requirements The spectral range $\Delta\lambda$


Facility	Source	v, Hz	Source <flux></flux>	Facility Flux	L, M	<u>Δ</u> λ, Å
NRT	IBR-2	5	0.08·10 ¹⁴	5.5·10 ⁶	10 (20)	7.8
RADEN	J-PARK	25	0.1 ·10 ¹⁴	5.8x10 ⁷	10 (18)	6.9
IMAT	ISIS	10	0.007·10 ¹⁴	3.8x10 ⁷	14 (56)	6
VENUS	SNS	60	0.1·10 ¹⁴	~10 ⁸	15 (20)	2.4
ODIN	ESS	14	3·10 ¹⁴	~10 ⁹	10 (64)	4.6 (14 Hz)

way, namely **RADEN** at JPARC [Kiyanagi et al. (2011)], which has meanwhile entered commissioning, **IMAT** at ISIS [Kockelmann et al. (2015)] which is in the final stage of construction, **VENUS** at SNS which reportedly has received funding for construction, but also an imaging instrument project at the pulsed reactor source **IBR-2** [Lukin et al. (2015)].»

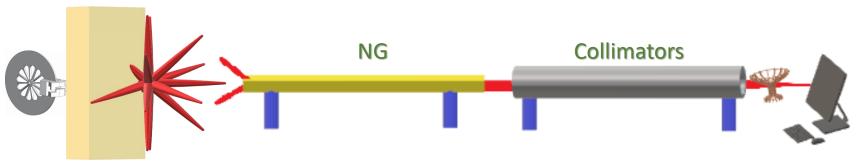

The energy dispersive neutron radiography on IBR-2 reactor

The energy dispersive neutron radiography: requirements

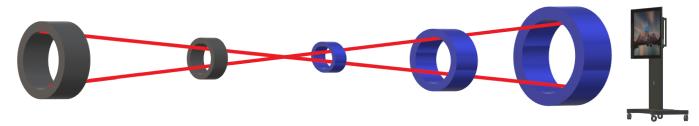
The energy dispersive neutron radiography: neutron guide system at ODIN@ESS



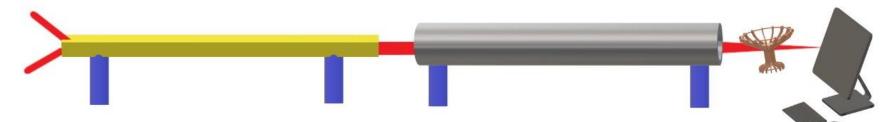
M. Stroble Physics Procedia 69 (2015) 18 – 26


Parameter		4 × 10 ⁹ Spectrum	FW3@M Horizontal = 140 mm
L/D	4002000	3 3	(arb.un.)
L	50(guide)+14 m	Intensity (arb.un.)	2 2 1
Flux	~10 ⁹ n/cm²/s	$ \begin{array}{c} \underline{f} \\ 0 \\ 0 \\ $	€ 0 0 100 200 300 Position (mm)
Spectral resolution ($\Delta\lambda/\lambda$)	0.5% - 10 %	FW3QM Vertical = 148 mm	Total intensity =1.040e+11
Spatial resolution (L/D=2000)	10 µm	Ê 200	100 E
FOV	200x200 mm ²		100 200
Neutron bandwidth (14 Hz) (7 Hz)	~4.6 Å ~9 Å	0 6 4 2 0 Intensity (arb.un.) x 10 ⁸	300 0 100 200 300 Position (mm)

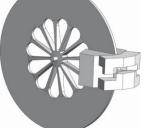
Prospects and requirements for the neutron radiography method on DNS-IV neutron source


1. Traditional or classical facility for neutron radiography and tomography – NRT-2

2. Energy dispersive neutron radiography station - EDNR



Prospects and requirements for the neutron radiography method on DNS-IV neutron source Requirements for neutron source


- 1. <u>High flux</u> at the sample position
- 2. <u>High L/D parameter</u>: long L and small D. We ask L to ~20 m
- 3. Low fast neutron background. We ask the tangential channel
- 4. Broad spectral range $\Delta\lambda$, repetition rate of source v=10 Hz
- 5. Cold neutron spectra (moderator T=30 K)

Prospects and requirements for the neutron radiography method on DNS-IV neutron source Requirements for neutron source

- 1. High flux at the sample position. Short exposition time
- 2. High L/D parameter: 15 m of NG and 30 m of Collimators
- 3. Neutron Guide. Uniform beam. M=2 and M=3. The radial channel.
- 4. Broad spectral range $\Delta\lambda$, repetition rate of source v=10 Hz.
- 5. Cold neutron spectra (moderator T=30 K +60 K)

Prospects and requirements for the neutron radiography method on DNS-IV neutron source Requirements for neutron source

- 1. Time-average flux density: $(0.5 1.5) \cdot 10^{14} \rightarrow \Phi_0 = 1.5 \cdot 10^{14} \text{ n/cm}^2/\text{s}$
- 2. Half-width of neutrons: $(20 200) \ \mu s \rightarrow \Delta t_0 = 200 \ \mu s$
- 3. Pulse repetition rate: (10 30) Hz \rightarrow v = 10 Hz
- 4. Moderators: cold (~90 K) + very cold (~30 K)

Facility	Source	v, Hz	<flux></flux>	Flux	L, M	Δλ, Α
NRT	IBR-2	5	0.08·10 ¹⁴	5.5·10 ⁶	10 (20)	7.8 (exp)
RADEN	J-SNS	25	0.1 ·10 ¹⁴	5.8x10 ⁷	10 (18)	6.9
IMAT	ISIS	10	0.007·10 ¹⁴	3.8x10 ⁷	14 (56)	6
VENUS	SNS	60	0.1 ·10 ¹⁴	1·10 ⁸	15 (20)	2.4
ODIN	ESS	14	3·10 ¹⁴	~ 10 ⁹	10 (64)	4.6 A (14 Hz)
NRT-M EDNR	DNS-IV	10	<u>1.5·10¹⁴</u>	<u>~10⁹</u>	~40 ~45	~6-7

Thank you for your attention