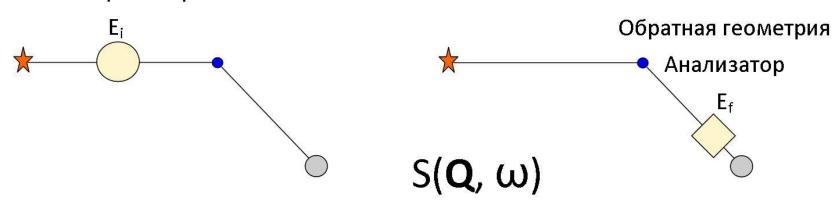
Imelastic neutron scattering at DNS-IW


E.A. Goremychkin (FLNP, JINR)

Дифракция Образец Импульсный источник нейтронов Детектор S(Q)

Неупругое рассеяние

Прямая геометрия

Монохроматор

Science with INS

$$S(\mathbf{Q}, \omega, T) = \chi''(\mathbf{Q}, \omega, T) (1 - \exp(-\omega/k_B T))^{-1}$$

- ☐ Magnetic dynamics of strongly correlated electron systems
 - High temperature superconductors
 - Quantum magnets
 - Non Fermi liquid systems
 - Systems with proximity to quantum critical point
 - Mixed valence, Kondo effect, Heavy Fermions
- □ Phonons, Molecular dynamics, Biomolecular Dynamics

4D $S(Q,\omega,T)$

ISIS 8 spectrometers

Merlin direct geometry, general purpose single crystal and powder

LET direct geometry, high resolution, general purpose single crystal and powder (TS2)

Tosca inverse geometry, molecular spectroscopy

Iris inverse geometry, high resolution QES and INS

Osiris inverse geometry, high resolution QES and INS and diffraction

Maps direct geometry, general purpose single crystal and powder

Vesuvio inverse geometry, deep inelastic scattering

Mari direct geometry, general purpose powder samples

SNS 6 spectrometers

ARCS direct geometry Atomic-level dynamics in materials science, chemistry, condensed matter sciences CNCS direct geometry, cold neutron Condensed matter physics, materials science, chemistry, biology HYSPEC direct geometry Measures excitations in small single-crystals with optional polarization analysis SEQUOIA direct geometry Dynamics of complex fluids, quantum fluids, magnetism, condensed matter, materials science

BASIS back scattering, inverse geometry Dynamics of macromolecules, constrained molecular systems, polymers, biology, chemistry, materials science

VISION inverse geometry Vibrational dynamics in molecular systems, chemistry

J-PARC 5 spectrometers

4SEASONS direct geometry, general purpose single crystal and powder

DNA inverse geometry, high resolution Biomolecular Dynamics Spectrometer

HRC direct geometry, general purpose single crystal and powder

AMATERAS direct geometry, high resolution

POLAND (project) direct geometry + polarisation analysis

IBR-2 2 spectrometers

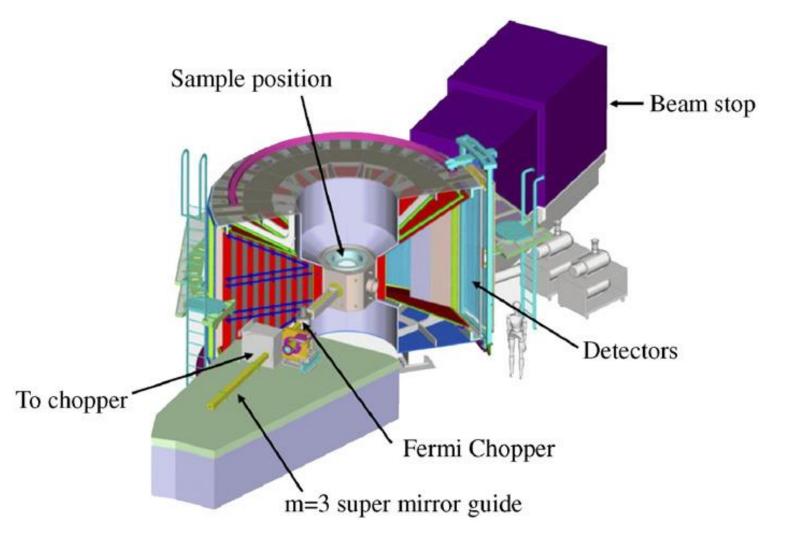
NERA inverse geometry Vibrational dynamics in molecular systems, chemistry

DIN 2PI direct geometry, general purpose powder samples

ESS 5 spectrometers

BIFROST Indirect Geometry Spectrometer. Swiss-Danish team to build a pioneering crystal analyzer spectrometer optimized to study dynamics in quantum materials and matter under extreme conditions.

MIRACLES Indirect Geometry Spectrometer high resolution backscattering. It will be one of the ESS long instruments (L_1 =162.5 m).


VESPA Indirect Geometry Vibrational Spectrometer TOSCA/NERA like at $L_1 = 60$ m

CSPEC is a direct geometry time of flight spectrometer $L_1 = 160 \text{m } L_2 = 3.5 \text{m}$

T-REX is a direct geometry time of flight spectrometer $L_1 = 170$ m $L_2 = 3.0$ m Polarization analysis. Wide energy range from μeV to hundreds meV

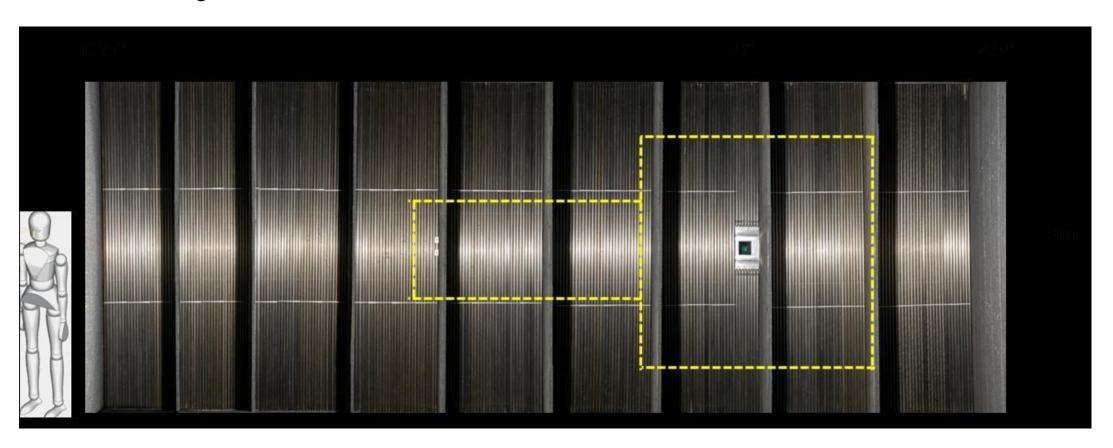
MERLIN - a high count rate, medium energy resolution, direct geometry chopper spectrometer

Merlin has been in user operation since 2008.

- Supermirror converging m3 guides
- Incident energy 7-2000 meV
- Energy Resolution: Depends on the choice and speed of Fermi chopper $\Delta h\omega/E_i$ =3-5 % FWHM at the elastic line
- Fermi chopper: 10 m from the moderator
 50-600 Hz phased to ISIS pulse ±0.1ms
- Background chopper: 8.5m at 50Hz
- Beam size at the sample: 50x50 mm,
 motorized jaws can define a smaller beam size
- Intensity at the sample(E_i = 45 mev, $\Delta h\omega/E_i$ =5%) $6x10^4$ (n·cm⁻²·s⁻¹)

MERLIN detector: 2.5 m from the sample position

Position sensitive ³He tubes (10 bar partial pressure) 2.5 cm diameter, 3 m long, resolution 21 mm along the tube


Angular range: -45° to 135° horizontal

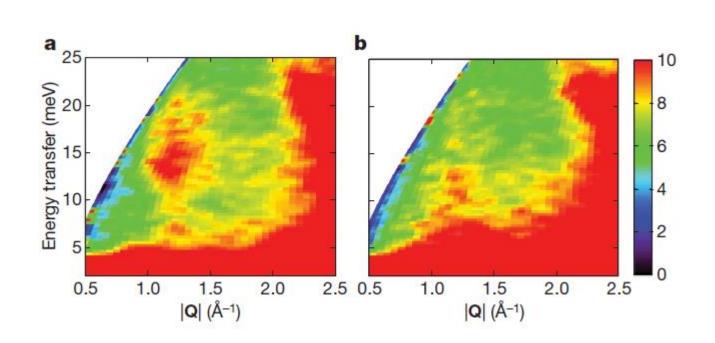
±30° vertical direction

Smallest scattering angle 3°

Detector Pixels: 69632

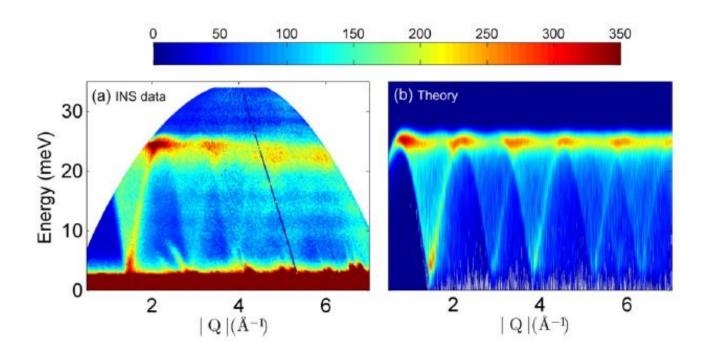
Solid Angle: 3.1Sr

R.A. Ewings, A. Buts, M.D. Le, J. van Duijn, I. Bustinduy, T.G. Perring "Horace: Software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments" Nuclear Instruments & Methods A 834, 132-142 (2016).

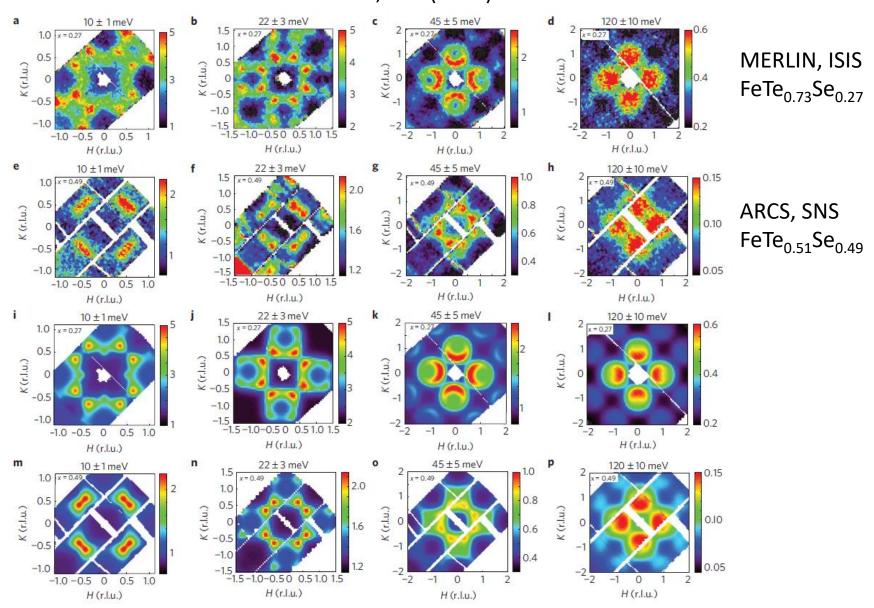

Mslice, Horace, Mantid


Fixed angle between k_i and one of the high symmetry direction in the crystal (k_i is parallel to c): $(\phi, \theta, t) \rightarrow (Q_x, Q_y, \omega) Q_z$ is not defined

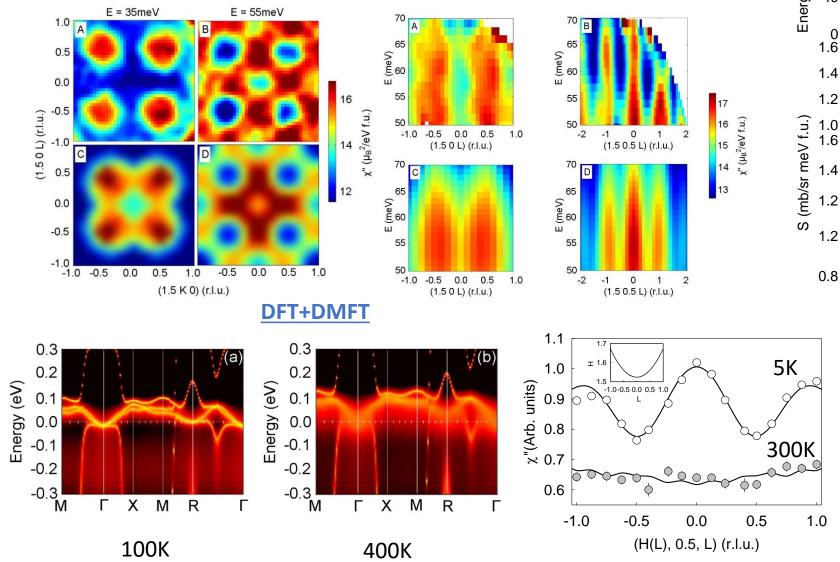
Multiple crystal angle (crystal rotated about vertical axis (1,-1,0) with (HHL) scattering plane): Full four dimensional scattering function $S(Q_x,Q_y,Q_z,\omega)$

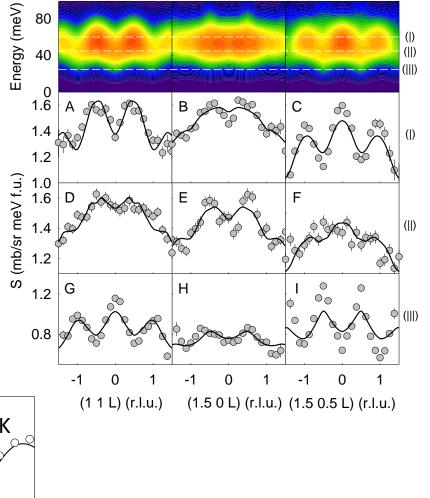

$$(\phi, \theta, t, \psi) \rightarrow (Q_x, Q_y, Q_z, \omega)$$

A.D. Christianson, E. A. Goremychkin, R. Osborn *et al.*, "Unconventional superconductivity in $Ba_{0.6}K_{0.4}Fe_2As_2$ from inelastic neutron scattering" Nature **456**, p. 930 (2008)

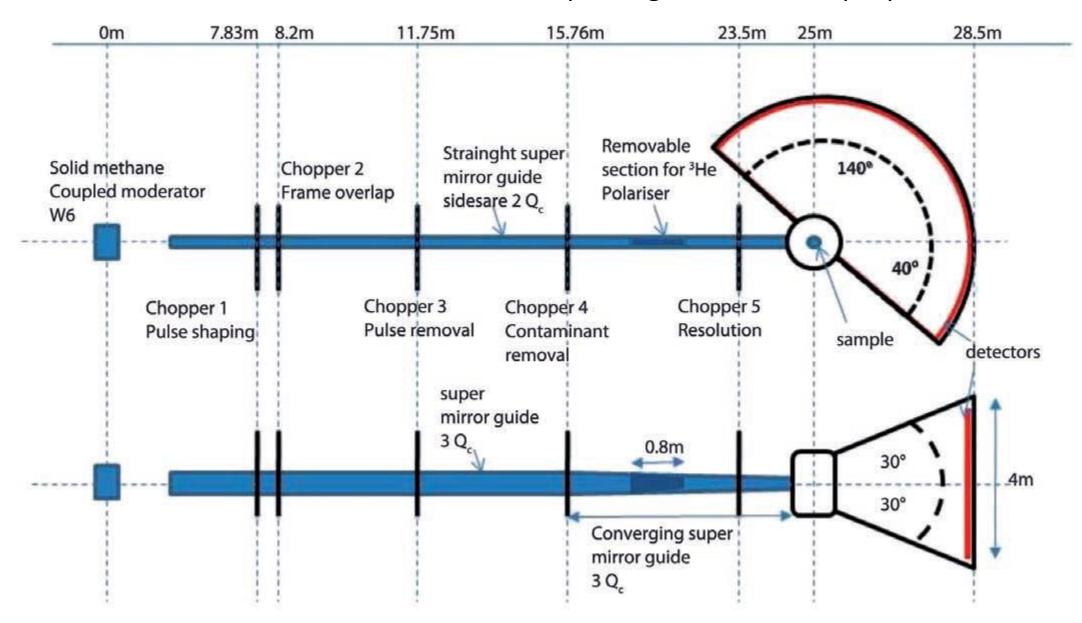


E. S. Klyushina *et al.*, PHYSICAL REVIEW B **96**, 214428 (2017)



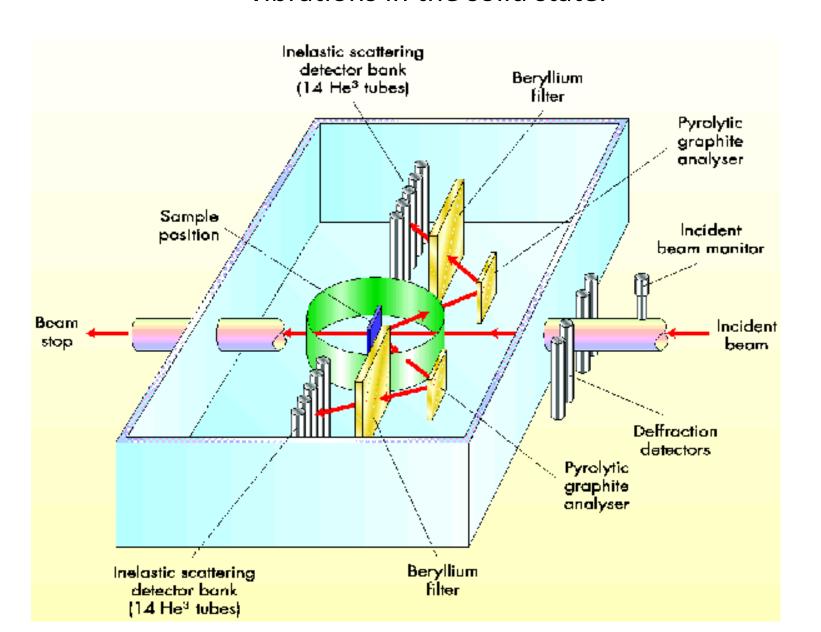

- (a) INS data measured on a powder sample at T = 5 K using the Merlin spectrometer with an incident energy of 35 meV.
- **(b)** Spin-wave simulations of the powder excitation spectrum of BaNi₂V₂O₈ performed for the Hamiltonian (3) with the parameters $J_n = 12.3$ meV, $J_{nn} = 1.25$ meV, $J_{nnn} = 0.2$ meV, $J_{out} = -0.00045$ meV, $D_{EP} = 0.0695$ meV, $D_{EA} = -0.0009$ meV

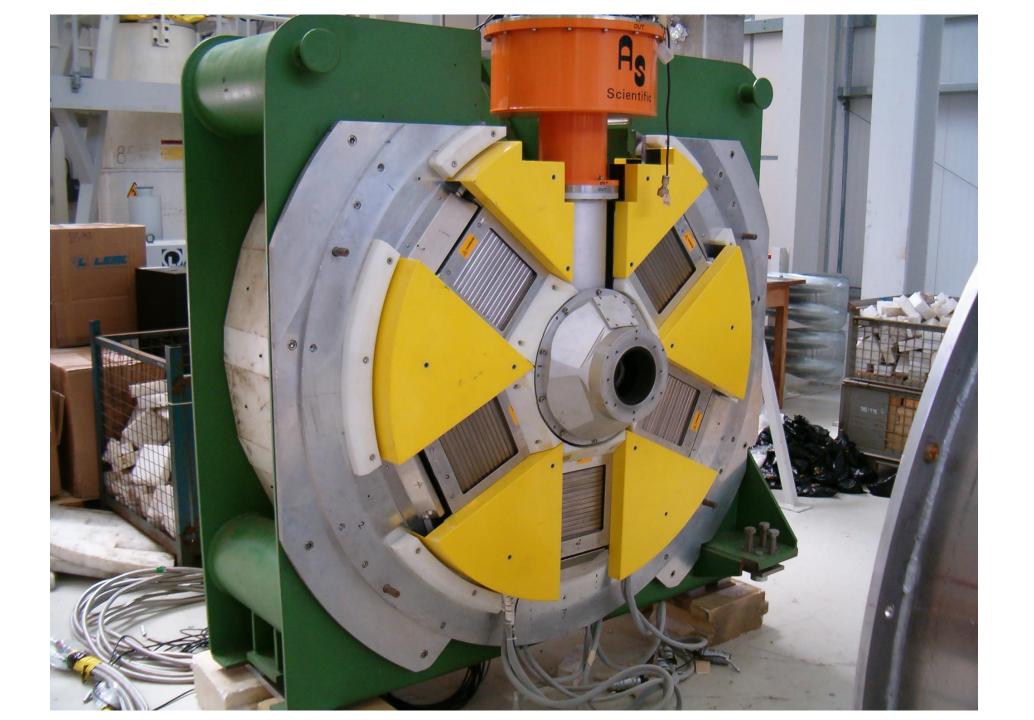
M. D. Lumsden, A. D. Christianson, E. A. Goremychkin *et al.*, "Evolution of spin excitations into the superconducting state in $FeTe_{1-x}Se_x$ " NATURE PHYSICS **6**, 182 (2010)



E. A. Goremychkin, H. Park, R. Osborn *et al.*,"Coherent band excitations in $CePd_3$: A comparison of neutron scattering and *ab initio* theory" *Science* **359**, 186–191 (2018)

LET is a cold neutron multi-chopper spectrometer for the study of dynamics in condensed matter to understand the microscopic origin of material properties.

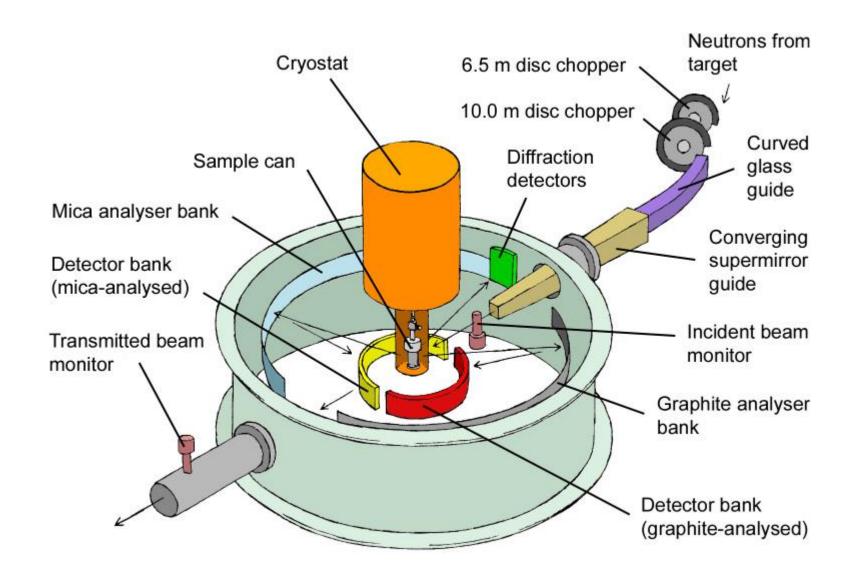




The Spectrometer					
Moderator	Coupled composite (solid CH4)				
Primary flight paths L1	25 m				
Secondary flight paths L2	3.5 m				
Beam size (HxW) at sample	50 mmx40 mm				
Scattering angles	Horizontal -40 to +140°, Vertical ±30°				
Detector resolution	25 mmx25 mm or 0.4° x 0.4°				
Incident energy	0.6–80 meV				
Energy resolution	Δ E/Ei \geq 1.5% at 20 meV, Δ E/Ei \geq 0.8% at 1 meV				
Qmax, Qmin	11.8/λ (Å-1), 0.32/λ (Å-1)				
Sample environment					
CCR	5–600 K sample size 40 mmx50 mm				
Orange cryostat	1.5–310 K sample size 40 mmx50 mm				
Dilution fridge	50 mK–4 K sample size 35 mmx40 mm				
Cryomagnet	9 T, 1.6–310 K sample size 25 mmx25 mm				

440 PSD tubes S=15m²

TOSCA is an indirect geometry spectrometer optimized for the study of molecular vibrations in the solid state.

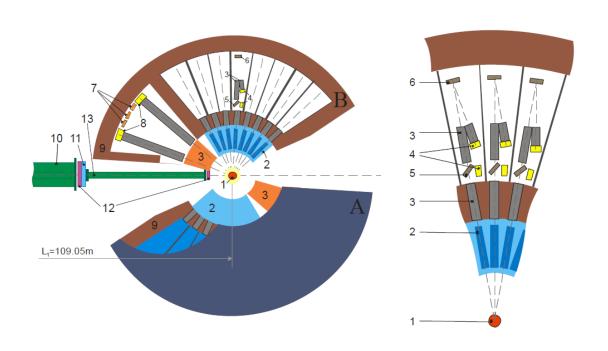


TOSCA technical information

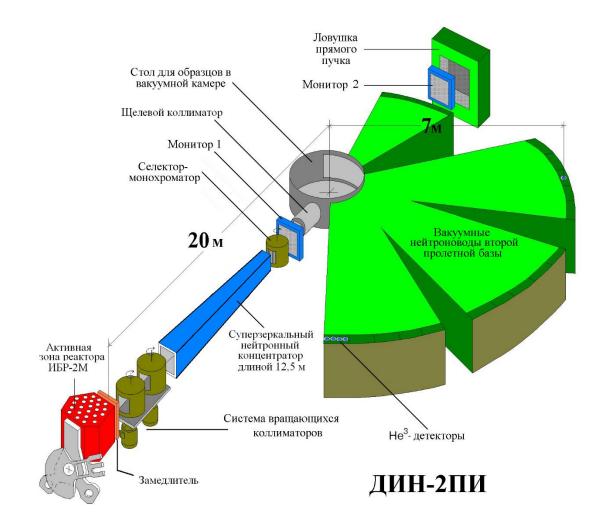
Beam line	N4
Moderator	300K water moderator poisoned at 1.5 cm
Energy resolution	~1% ΔE/E
Primary flight path	17 m
Chopper	4 blade chopper running at 10 Hz (operational February 2010)
Secondary flight path	0.6 m average
Beam size at sample	40 mm x 40 mm
Detectors	130 squashed ³ He tubes
Energy range	-20, 8000 cm ⁻¹ (-2.5, 1000 meV)
Temperature range	10 K (normal operational mode) up to 550 K
Sample changer	36 samples

IRIS is a time-of-flight inverted-geometry crystal analyzer spectrometer designed for quasielastic and low-energy high resolution inelastic spectroscopy.

Technical Summary

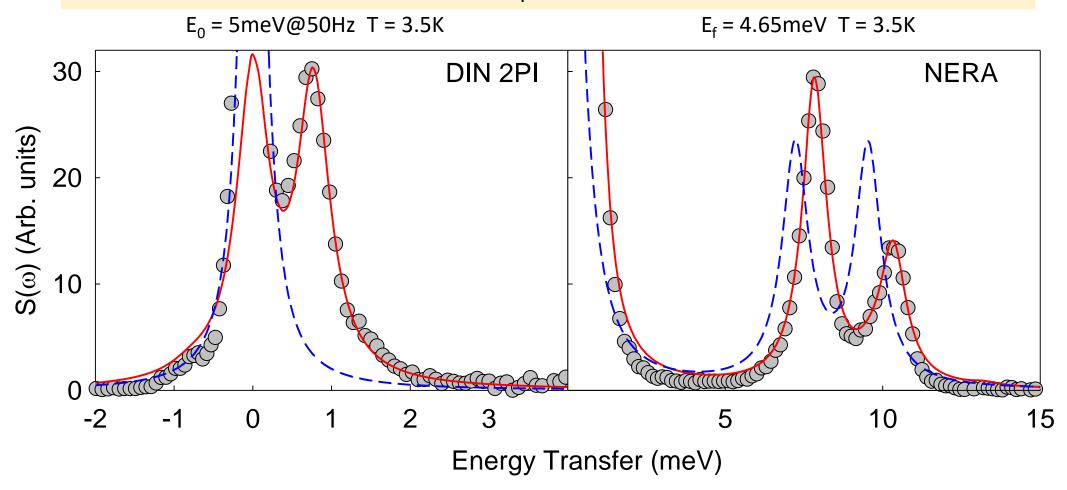

	PG 002	PG 004	Mica 002	Mica 004*	Mica 006	
Analysing Energy (meV)	1.84	7.38	0.207	0.826	1.86	
Dynamic Range (meV)	-0.4 to +0.4	-3.5 to +4.0	-0.02 to +0.02	-0.15 to +0.15	-0.4 to +0.4	
Resolution (µeV)	17.5	54.5	1.0	4.5	11.0	
Angular Coverage (deg)	25-160		25-155			
Q-range (Å-1)	0.42 to 1.85	0.84 to 3.70	0.13 to 0.62	0.26 to 1.24	0.40 to 1.87	
Spectroscopy Detectors	51 Zn scintillators					
Diffraction Detectors	8 He3 tubes at 2θ ≈ 170° Δd/d = 2.5x10 ⁻³ d-range (Å) = 1-12					

Instrument Parameters


N6
Hydrogen cooled to 25K
Disc choppers at 6.3m and 10m
Curved neutron guide, 2.35 km radius; 65 mm (v) x 43mm (h) cross-section feeding a 2.5m focusing super mirror guide to the sample
36.41m from the moderator
30 mm (v) x 20mm (h)
1x10 ⁷ n/cm ² .s at 150uA ISIS power

^{*} only available with muscovite Mica. Fluorinated mica should be used for Mica006 and Mica002

FLNP inelastic instruments NERA and DIN 2PI


Figure 3. The main part of the NERA spectrometer: 1 - sample, 2 - Be-filters, 3 - collimators, 4 - He-3 detectors (INS and QENS), 5 - PG analysers (INS), 6 - single crystal analysers (QENS), 7 - detectors for high intensity diffraction, 8 - diffraction detectors with a good collimation, 9 - spectrometer shielding, 10 - Ni-coated mirror neutron guide in a vacuum tube, 11 - incident beam monitor, 12 - diaphragms, 13 - vacuum neutron guide.

 $Ho^{11}B_{12}$

The blue dashed line is the CEF only response at 3.5K.

The red solid line is the CEF plus mean field due to AFM order

LLW CEF parameters: x = 0.0066 W = 0.03374 meV (blue line) + Molecular Field: $H_z = 0.18 \text{meV} (2.1T)$ (red line)

DNS IV

- 1. INS spectrometer in direct geometry, fast Fermi chopper, medium resolution (~3-5%), large PSD detector, energy transfer range from 10meV up to 300-500meV, general purpose, single crystal and powder
- 2. INS spectrometer in direct geometry, disk choppers cascade, high resolution (~1.0-1.5%), large PSD detector, energy transfer range from ~0.1meV up to ~30meV, general purpose, single crystal and powder
- 3. Inverse geometry spectrometer for studies of vibrational dynamics in molecular systems, (chemistry, biology), large solid angle, high resolution (~1-2%)

Thanks a lot for your attention!