Workshop "Advanced Ideas and Experiments for DNS-IV" 6 - 8 December, 2018, Dubna

Muon physics at proton accelerator

V.N.DUGINOV

Dzhelepov Laboratory of Nuclear Problems Joint Institute for Nuclear Research, Dubna

Why muons?

The popularity of muons in basic and applied research is due to the properties of the muon:

 $-\tau_{\mu}$ =2,2 mks;

- \dot{m}_{μ} =106 MeV/c² which is 1/9 proton mass and 207 electron masses;

- a magnetic moment μ_{μ} is 3.2 times larger than that of the proton.

The muons interact mostly electromagnetically with surrounding atoms and molecules in matter.

What is a Muon?

$$p + p \to \pi^+ + p + n$$
$$\pi^+ \to \mu^+ + \nu_{\mu}$$
$$\pi^- \to \mu^- + \overline{\nu}_{\mu}$$

2.

Muon beams are made here on earth using high-energy protons to produce short-lived pions.

	charge	spin	mass	moment	$\gamma / 2\pi$ (kHz G ⁻¹)	lifetime (µs)	
e	±e	1/2	m _e = 0.51 MeV	657 μ _p	2800	∞	
μ	±e	1/2	207 m _e = 105.7 MeV	3.18 μ_p	13.5	2.19	
р	±e	1/2	1836 m _e = 938 MeV	μ_{p}	4.26	∞	

A muon is a spin 1/2 particle.

Helpful for to think of a *positive* muon as a *light* proton.

Muons live only for 2.2 us (on average!).When implanted in a solid, the muon behaves as

a microscopic magnetometer.

Obtain a *time histogram* of positron count rate;

 Typically 10⁶–10⁸ events recorded. 10 min–10hr.

 $N_{B(F)}(t) = N_0 exp(-t/t_{\mu})[1+A_0P(t)]$

Asymmetry plot: time evolution of muon spin polarization.

 $A(t) = A_0 P(t) = [N_B(t)N_F(t)]/[N_B(t)+N_F(t)]$

Schematic illustration of a µSR experiment

 \otimes

Example of low energy muon stopping profiles in a YBa2Cu3O7 (75nm) - PrBa2Cu3O7(50nm) - YBa2Cu3O7 (75nm) heterostructure, showing the layer by layer sensitivity.(PSI)

Advantages of µSR

The muon is a local probe

Needs no applied field, unlike NMR; ٠

absorbing or NMR unfavorable nuclei;

need scattering to obtain structure);

Simple spin -1/2 probe; ٠

moments ~ $10^{-3} \mu_{\rm B}$;

٠

٠

٠

- it can be used to follow an **order parameter** as a function of • temperature, it works very well at milli-Kelvin temperatures (the incident muons easily pass through the dilution refrigerator windows),
- Can provide information about internal magnetic field ٠ distributions, magnetic fluctuations and spin dynamics, even above the magnetic transition temperature.
- The technique can also be used to obtain dynamical ٠ information through the anisotropy of the electron-nuclear hyperfine interaction.

2 µs

Proton beams

Accelerator	PSI	TRIUMF	ISIS/RAL	ESS	JPARC	SNS
Proton energy, Gev	0.590	0.520	0.800	2.5	3	1.2
Proton intensity	2.2 mA	0.15 mA	0.2mA	50 mA(macro -puls)	1MW, 6.44*10 ¹³ p/puls	2 mA (2 MW)
Beam time structure	50 MHz, 2 ns	23 MHz	50 Hz, 80 ns, 4×10 ⁵ μ ⁺ / s	14 Hz, 2.86 ms (RF 352 MHz)	25 Hz 30 ns (slicer) (RF 1.23- 1.67 MHz)	60 Hz, < 1.0 μs
Number of muon beamlines	6	4	5	(8)	6	
Tasks performed	muSR, mu- e-gam, mu3e	muSR, muon properties	muSR		muSR, muon properties	

Twice a year, the International Committee reviews the proposals, selects the best and allocates time on the instruments. The competition is very strong.

J-PARC

ESS

1.334 GeV LINAC

SNS began to think about muon beams. Again...

Future Muon Source Possibilities at the SNS

SEE facility @ SNS - allows to level the temporal structure of the beam. Williams, Travis J., and MacDougall, Prof. Gregory J. Future Muon Source Possibilities at the SNS. United States: N. p., 2017. Web. doi:10.2172/1364319

Muon microbeam production

Design studies show this muon micro-beam will be a 10 MeV straight beam, with a narrow spatial size (<1 mm diameter), narrow energy width (a few 0.1 %) and a high luminosity of 10⁹/(cm²s).

Distribution of science topics (ISIS/RAL)

Conclusions

1. The muons are produced parasitically and have the time structure of the neutron source or alternative options are to kick a fraction of the beam onto a dedicated target.

2. Muons at DNS-4 would significantly enrich the spectrum of material research possibilities at one location.

3. Muons at high rates from a multi-MW proton driver could open new dimensions for particle physics, both for searches for rare decays and for the determination of fundamental constants.

THANK YOU FOR ATTENTION