Workshop "Advanced Ideas and Experiments for DNS-IV" 6 – 8 December, 2018, Dubna

Neutron diffraction at DNS-IV

- A variety of neutron diffractometers
- ***** TOF-diffractometers at active pulsed neutron sources
- Development trends in TOF-diffractometers design
- Diffraction at DNS-IV: basic set and perspectives

©2018, A.M.Balagurov bala@nf.jinr.ru

High-resolution neutron powder diffraction: $(\Delta d/d)_{\min} \leq 0.002$

3

Acting (6) and expected (3) pulsed neutron sources

	Source	Country	Since	W, MW	Φ ₀ , 10 ¹³	$\Delta t_{\rm f}$	Δt_0	v ₀ , Hz
1	IBR-2	Russia	1984	2	0.8	215	350	5
2	ISIS-I	UK	1985	0.2	0.07	1	20	50
3	LANSCE	USA	1985	0.1	0.05	1	20	20
4	SNS-I	USA	2006	1	1	1	20	60
5	J-SNS	Japan	2009	1	1	1	20	25
6	ISIS-II	UK	2011	0.05	0.02	1	60	10
7	CSNS	China	2018	0.1	0.05	1	20	25
8	ESS	Sweden	2019	5	30	2860	~3000	14
9	SNS-II	USA	???	0.5	0.5	1000	~1100	10

TOF diffractometer WISH at ISIS (UK)

Specialization of neutron diffractometers

I. Structure: single crystal 2D PSD, $\Delta x < 3 \text{ mm} \rightarrow 4\pi \text{ PSD}$

II. Structure: polycrystal (powder) high resolution, $\Delta d/d \approx 0.002$, wide angle PSD

III. Magnetic structure (single- or polycrystal) medium resolution, $\Delta d/d \approx 0.005$, large (~15 Å) $d_{\rm hkl}$

IV. In Situ, Real Time experiment high intensity (~10⁶ н/с), large range of d_{hkl}

V. High pressure, microsamples high intensity, low background

VI. Long period and macromolecular structures medium resolution, $\Delta d/d \approx 0.005$, very large (~60 Å) $d_{\rm hkl}$

VII. Local structure of crystals high momentum transfer, $Q_{max} \sim 40 \text{ Å}^{-1}$

VIII. Microstructure of materials (internal stresses, texture, ...) high resolution, $\Delta d/d \approx 0.004$, high intensity

Intensity

Pulse width

λ-range

- > λ -distribut.
- Background

6

TOF-diffractometers at active pulsed sources (~35 in total)

Diffraction at IBR-2

- **1. HRFD*** powders atomic and magnetic structure
- 2. **RTD** powders, single crystals real-time, *in situ*
- 3. DN-6 microsamples high-pressure
- 4. Epsilon** rocks, bulk samples internal stresses
- 5. SKAT** rocks, bulk samples textures
- **6. FSD* bulk samples material science**
- 7. DN-12 microsamples high-pressure
- 8. FSS* bulk samples internal stresses (setting-up)

* Fourier RTOF technique – a special feature of diffraction at the IBR-2 reactor ** Long (~100 m) flight pass

Diffraction at the IBR-2: Resolution

Advanced detectors for TOF diffractometers

MaNDi (SNS), Macromol. single cryst.

Powgen (SNS), HI + HR

$$L = 30 \text{ m}, \ \Omega_{\text{det}} \approx 4.1 \text{ sr}$$

$$L = 60 \text{ m}, \Omega_{\text{det}} = 4.0 \text{ sr}$$

Magnetic diffractometer WISH, ISIS, UK

WISH schematic drawing

ESS pulsed neutron sources, v = 14 Hz, $\Delta t_0 = 2860 \ \mu s$

HEIMDAL – hybrid, Diff. + SANS + IM MAGiG – polarized, single crystal **BEER** – engineering NMX – single crystal, macromolecular $\Delta\lambda \approx 282/L$

ESS parameters:

Average beam power, MW	5
Peak beam power, MW	125
Proton kinetic energy, GeV	2.0
Pulse repetition rate, Hz	14
Average pulse current, mA	62.5
Macro-pulse length, μs	2860
Number of target stations	1
Number of moderators	2
Number of neutron beam ports	s 42
Separation between ports degr	ees 6

HR + HI powder diffractometer DREAM, ESS $(L_1 = 76 \text{ m}, \Delta \lambda \approx 3.7 \text{ Å})$

DREAM feature: bispectral switch (cold + thermal neutrons) DREAM choppers: PC – pulse shaping, T0, BC – band control, OV – overlap = 7 ch-s DREAM costing (kEu): Design = 1970, Detector + DA = 6620, Optic = 1500, Choppers = 1120, Shielding = 2120, Infrastr. = 320, ... <u>Total</u> = 12 960 $L_1 = 76.5 \text{ m}, (\Delta t_0)_{\min} = 10 \text{ µs} \rightarrow \Delta d \approx 2.8 \cdot 10^{-4} \text{ Å},$

Development trends of TOF-diffractometers at ESS

- 1. Bi-spectral extraction:
- 2. Very long flight path:

 $(\lambda_1)_{\text{max}} \approx 1.2 \text{ Å}, (\lambda_2)_{\text{max}} \approx 3 \text{ Å}$

- 76 / 160 m
- 3. Detector solid angle: $\sim 4 \text{ sr}, \quad \Omega \rightarrow 4\pi (12 \text{ sr})$
- 4. Combination of diffraction + SANS + imaging
- 5. Focusing on in situ, real-time mode of data acquisition
- 6. Complicated chopper system: $\sim(6-11)$ choppers of different assignments
- 7. Extremely high cost: $(12 \div 20) \cdot 10^6$ Eu

Basic parameters of IBR-2, ESS and DNS-IV (the first stage)

		IBR-2	ESS	DNS-IV
1. Tim	e-average flux density:	0.08 ·10 ¹⁴	3.1014	2·10 ¹⁴
2. Wid	th of thermal pulse:	~350 µs	3000 µs	~300 µs
3. Puls	e repetition rate:	5 Hz	14 Hz	10 Hz
4. Bac	kground power:	~7%	<1%	~3.5%
5. Nun	nber of beam ports:	14	~40	~25

For TOF-diffractometer: $(\Phi_1/\Phi_2) \cdot (\Delta t_2/\Delta t_1)$

ESS / IBR-2 = $(3 \cdot 10^{14}/0.08 \cdot 10^{14}) \cdot (350/3000) \approx 4.5$

(without frame multiplication system, $K \sim 2 \div 3$)

DNS-IV / IBR-2 = $(2 \cdot 10^{14} / 0.08 \cdot 10^{14}) \cdot (350 / 300) \approx 30$

Hybrid diffractometer HEIMDAL, ESS

(Diffraction + SANS + Imaging, $L_1 = 167 \text{ m}, \Delta \lambda \approx 1.7 \text{ Å}, \lambda_{\min} \approx 0.6 \text{ Å})$

Flux at a sample: from 3.8x10⁶ (HR) to 2.0x10⁹ (HI)

Wavelength range as a function of frequency

Since 1994: High Resolution Fourier Diffractometer at IBR-2

Fast Fourier chopper at HRFD (IBR-2) 0.7 mm Rotor ($\emptyset = 50 \text{ cm}$) **Stator Dubna chopper: Al-alloy** $\emptyset = 50 \text{ cm}$ N = 1024 $\Delta x = 0.7 \text{ mm}$ **V**_{max} = 6000 rpm 7.5 kW motor $\Omega = 100 \text{ kHz}$ 0.50 **Triangular chopper** Δt_0 = down to 10 µs 0.25 transmission function: 75% 25% $T(t) \approx 1 + \sin \omega t$ $S_{beam} = 3x20 \text{ cm}^2$ High Low **Transmission** = 25%+1**Pick-up signals** for RTOF analyzer: **Price = 120 kEu** binary or sinus-like

HRFD resolution

Resolution and shape of diffraction peaks

For TOF: I(300)/I(30) = 11, $\Delta x = 14$ mm, $L_1 = 60$ m, f = 248 Hz For RTOF: I(300)/I(10) = 5, $\Delta x = 0.7$ mm, $L_1 = 20$ m, f = 100 Hz Correction of the peak profile on the phase mismatch.

TOF-diffraction: Acceptable characteristics of DNS-IV

 Half-width of fast neutrons: Δt₀ ~ 200 μs Pulse repetition rate: v = 10 Hz Moderators (at least three): thermal + cold (~80 K) + very cold (~30 K) Background power: < 4% 	1.	Time-average flux density:	$\Phi_0 \sim 2 \cdot 10^{14} \text{ n/cm}^2/\text{s}$
 3. Pulse repetition rate: v = 10 Hz 4. Moderators (at least three): thermal + cold (~80 K) + very cold (~30 K) 5. Background power: < 4% 	2.	Half-width of fast neutrons:	$\Delta t_0 \sim 200 \ \mu s$
 4. Moderators (at least three): thermal + cold (~80 K) + very cold (~30 K) 5. Background power: < 4% 	3.	Pulse repetition rate:	v = 10 Hz
5. Background power: < 4%	4.	Moderators (at least three):	thermal + cold (~80 K) + very cold (~30 K)
	5.	Background power:	< 4%

The basic set of neutron TOF-diffractometers:

	Instrument	Main issue	Moderator	Resolution
1.	Material science*)	internal stresses	300 K	High
2.	High-resolution*)	structure	80 K	High
3.	High-intensity	in situ, real-time	80 K	Medium
4.	High-pressure	micro samples	80 K	Medium
5.	Magnetic	structure	30 K	Medium

*) Fourier chopper must be used

TOF-diffraction at DNS-IV: Conclusions

- Prospects for TOF neutron diffraction at DNS-IV are looking very promising. The level of the main parameters (intensity, resolution, *d*-spacing range, ...) can be extremely high.
- 2. The basic set of diffractometers can include 5 the most called-for instruments, with 3 4 additional as the second stage.
- 3. Adequate moderators, neutron guides, detectors, data acquisition systems must be used in design.

4. Open question: Radial or tangential geometry of beam-lines?

The second stage may include:

Instrument	Main issue	Moderator	Resolution
5. Single crystal	structure	80 K	Medium
6. Texture	multi phase	80 K	High
7. Long period	macromolecular	30 K	Medium
			the M
	All Little II Litter mainme		

Pulse shaping technique for diffraction at long pulse sources

Multiplexing chopper system (with phase slewing to source)

Materials engineering diffractometer BEER, ESS (Diffraction + SANS + Imaging)

Simulated neutron spectra at the sample position

Mode	flux	wavelength	resolution	<i>d</i> -range
Diffraction	1.6 x 10 ⁷	1.2 2.9 Å	$\Delta d/d \sim 0.4\%$	0.7 2.3 Å
SANS	5.6 x 10 ⁶	4.7 6.3 Å	$\Delta Q \sim 0.003 \text{ Å}^{-1}$	20 350 Å

Moderators for DNS-IV

Tangential:

- Lower fast neutrons background
- > Higher neutron flux

>Smaller distance between moderator and neutron guide

Radial:

Larger number of beam-lines

Larger area

Starting from some λ_{cr} neutron flux does not grow up.

Calculated for: L=8 m & Ni-Ti, m=2 supermirror

How to transform 300 µs into 30 µs with Fermi chopper

Rietveld analysis of the HRFD data (MRIA package)

Diffraction pattern obtained with NAC-standard