

LIDODEAN

Ideas for the DNS-IV moderators and beam extraction, inspired by the ESS design

Workshop on Advanced ideas and experiments for the new Dubna Neutron Source DNS-IV, Dubna, 6th December 2018

Ken Andersen, Neutron Instruments Division, European Spallation Source ERIC

SOURCE

Site Photos

Site Photos

Site Photos

EUROPEAN SPALLATION SOURCE

October 2018

Long-pulse performance

 $\lambda = 5 \text{ Å}$ ESS 2016 design 5 MW ×10¹∛ Brightness (n/cm²/s/sr/Å) o Possibilities of pulse shaping ESS 2013 design (TDR) 2 MW **JPARC** ESS 2016 design 2 MW 1 MW SNS 2 MW ISIS TS2 ISIS TS1 32 kW 128 kW ILL 57 MW time[°](ms) 2 Ĵ 4 $\left(\right)$

EUROPEAN SPALLATION SOURCE

10

EUROPEAN SPALLATION SOURCE

Above target: 3cm tall butterfly moderator assembly

EUROPEAN SPALLATION SOURCE

Above target: 3cm tall butterfly moderator assembly

- Fully coupled moderators
 - No compromise
 - Time structure determined mainly by proton pulse length
- Hydrogen for cold spectrum
- Water for thermal spectrum
- All beamports can view both

EUROPEAN SPALLATION SOURCE

Above target: 3cm tall butterfly moderator assembly

- Fully coupled moderators
 - No compromise
 - Time structure determined mainly by proton pulse length
- Hydrogen for cold spectrum
- Water for thermal spectrum
- All beamports can view both

EUROPEAN SPALLATION SOURCE

17

water

para-H₂

Above target: 3cm tall butterfly moderator assembly

- Fully coupled moderators
 - No compromise
 - Time structure determined mainly by proton pulse length
- Hydrogen for cold spectrum
- Water for thermal spectrum
- All beamports can view both

Adapting the pulse width

Impact on bandwidth of pulse-shaping chopper

Impact on bandwidth of pulse-shaping chopper

$$T/\tau = 25 \Longrightarrow L_2/L_1 = 25$$

EUROPEAN **e**55 SPALLATION Impact on bandwidth of pulse-shaping chopper SOURCE $T/\tau = 25 \Longrightarrow L_2/L_1 = 25$ $L_1 = 6.3 \text{ m} \Longrightarrow L_2 = 157.5 \text{ m}$ $\Rightarrow \Delta \lambda = 1.8 \text{ Å}$ distance Longer pulse gives broader bandwidth: $\Delta\lambda \propto \tau/L_1$ L_2

time

Hall Layout

Hall Layout

0

J-PARC MLF

Low-dimensional moderators

Low-dimensional moderators

- 2-dimensional geometry
 - "pancake", "butterfly", "flat box"
 - Gain factor ~4 at H=2cm
- 1-dimensional geometry
 - "tube", "rod"
 - Gain factor ~10 at HxW=2x2cm²
- Non-isotropic emission

Low-dimensional moderators

Combination with pulse-shaping chopper

time

time

Combination with pulse-shaping chopper

Summary

- ESS will be a big step forwards
 - High source brightness thanks to 2D moderators
 - Bispectral flexibility
 - Resolution flexibility thanks to pulse-shaping choppers
- Possible further evolution at DNS-IV?
 - Further increase in brightness with 2D or 1D moderators
 - Better guide illumination by starting closer
 - More resolution flexibility with compact pulse-shaping choppers
- ESS gave up on having choppers inside bulk shielding
 - Maybe a possibility at DNS-IV?
 - Longer pulse length would allow choppers to be moved further away
 - Time-independent background of booster or pulsed reactor increases importance of pulse-shaping choppers

